
73 

 Koc. J. Sci. Eng., 5(1): (2022) 73-83                                    https://doi.org/10.34088/kojose.1012914 
                                                                     

 
 

Kocaeli University 

 

  Kocaeli Journal of Science and Engineering 
 

http://dergipark.org.tr/kojose 
 

 

 

 

Natural Navigation System Design for Indoor Mobile Robots 
 

F. Azeez ADEBAYO 1, *        ,  H. Metin ERTUNÇ 2               

 
1 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0002-8160-6949 
2 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0003-1874-3104 
 

 

 
Article Info 

  

Research paper 

  

Received : October 21, 2021 

Accepted : February 07, 2022 

 

Keywords 
 

Simultaneous Localization and 
Mapping 

Indoor Natural Navigation 

Sensor Fusion 
PID 

Differential Drive Robot 

 
 

 

 
   Abstract 

 

Natural navigation simply refers to free navigation without the necessity of tapes, magnets, 

reflectors, or even wires. Many autonomous vehicles possess this as world maps are readily 

available and provide a perfect basis for machine learning solutions. However, this is not so much 

the case for indoor applications. Here, paths are often dynamic and more constrained; therefore, 

requiring the continuous identification, mapping and localization of the surrounding area. This work 

focuses on developing an indoor natural navigation system; the localization is achieved with a 

fusion of the wheel’s odometry to the on-board Inertial Measurement Unit (IMU i.e., a combination 

of relative localization and absolute localization) using Unscented Kalman Filter (UKF) as system’s 

encoder’s accumulation of errors is desired to be nullified while employing a PID control in 

correcting reference state errors. The map is simultaneously constructed using laws of geometry 

based on static points obtained from a Lidar, subsequently converted to an occupancy grid layout for 

effective path planning. In operation, tangency is applied in the avoidance of dynamic obstacles. 

The simulation results obtained in this study confirms the possibility of a simple, educational, 

indoor navigation system approach easily integrable by other mobile robots of the differential drive 

model. 

 
 

 

 

1. Introduction* 

 

Various studies have gone into autonomous 

navigation in vehicles for both indoor and outdoor use 

cases. These studies, while they have without doubt 

contributed to the success recorded in this area, also offer 

execution of complex equations and algorithms, which has 

made its adoption difficult and ultimately, hinder their 

reproducibility. Indoor mobile robot navigation particularly 

suffers here as the lack of satellite positioning signals, so 

discussed in [1] implies its localization and mapping calls 

for the inclusion of more sensors in its determination 

which further complicates and compounds the equations.  

In this study, we attempt to build a simple indoor 

differential drive robot, using simplified steps and 

equations, for a better understanding of the literature, and 

to ultimately, ensure reproducibility in any coding 

language. A LiDAR-based navigation technology called 
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CoreSLAM [2] was studied and its variation, 

BreezySLAM [3] is implemented to generate an occupancy 

grid map [4] for which the robot will operate. Its feasibility 

and performance relative to other SLAM techniques is 

evaluated in [5].  

Due to the accumulation of noise leading to drift 

errors that is accompanied by the use of encoder’s wheel 

odometry alone in localization, a sensor fusion technique 

with the Unscented Kalman Filter, is applied to combine its 

results with an IMU [6-7]. The UKF, like the other filters 

such as Kalman, extended Kalman filter used in combining 

data of various sensors of similar targets, has been shown 

in [8] to require very basic governing equations on 

orientation and position in order to estimate robot states. 

In getting the robot to move from one desired place to 

another, the A-star algorithm from [9] is employed. The 

algorithm plots the shortest walkable path between nodes, 

in this study, map pixels, depending on the distance 

measurement technique selected; Manhattan, Euclidean, 

etc. Also, the suitability of PID in minimizing error 

between target and reference robot speed state has been 
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established in [10] while a simple Tangency approach is 

selected in avoiding obstacles as the need for a non-

infrastructural change and cost-free solution is imperative. 

The results obtained in this study showed a 70% 

improvement in path following accuracy of the sensor 

fused algorithm over the use of wheel odometry alone. 

This is further corroborated in [7], where for the square 

trajectory tested, an accuracy of 66.5% was observed, and 

a similar result is depicted in [11]. 

Similar works have also been demonstrated with 

some variation of the above techniques depending on the 

choice of sensor, often involving but not limited to; visual 

SLAM with cameras, sonar-based localization, or some 

hybrid integration into neural networks [11-15], as well as 

other combinations with more additions in terms of 

complexity and constraints, as in the use of RFID, Wi-Fi or 

Bluetooth whose accuracy and performance depends on 

implementing other external structures such as receivers 

[16-19]. The next section will highlight the methodology 

as well as offer calculation justifications in the design or 

the differential drive robot. After that, a section on results, 

followed by conclusions and recommendations marks the 

end of the paper. 

 

2. Materials and Methods 

 

2.1. Kinematics of Differential Drive Robot 

 

The basic configuration of the mobile robot is with 

two drive wheels with encoders mounted on them and a 

free castor wheel for its stability. Drive wheels can be 

controlled independently, and they maintain a common 

axis as shown in Figure 1. 

 

Figure 1. Differential Drive. 

 

The kinematic model of differential drive mobile 

robot is therefore given by the relations: 

 

�̇� =
𝑣𝑅+𝑣𝐿

2
cos 𝜃 =

𝑅

2
(𝜔𝑅 + 𝜔𝐿) cos 𝜃 (1) 

�̇� =
𝑣𝑅+𝑣𝐿

2
sin 𝜃 =

𝑅

2
(𝜔𝑅 + 𝜔𝐿) sin 𝜃 (2) 

�̇� =
𝑣𝑅−𝑣𝐿

𝐿
=

𝑅

𝐿
(𝜔𝑅 − 𝜔𝐿) (3) 

 

where; 𝜔𝑅  is rate at which right wheel is turning, 𝜔𝐿  is rate 

at which left wheel is turning, 𝑅 is radius of the wheels, 

and 𝐿 is the wheel base distance.  

 Three notable cases associated with the differential 

drive are also stated below: 

 When 𝑣𝑅 = 𝑣𝐿, the robot moves in a straight line either 

forward or backward depending on the direction of 

wheel rotation.  

 When 𝑣𝑅 = 0, the robot moves about the right wheel 

and about the left wheel when 𝑣𝐿 = 0. The robot will 

always move about the wheel with the smallest 

velocity and while this helps in steering, small errors 

in the relative velocities between the wheels can affect 

the robot trajectory.  

 When 𝑣𝑅 = −𝑣𝐿, the robot rotates about the midpoint of 

the wheel. 

Implementing this model helps us in translating from right 

and left wheel velocities, 𝑣𝑅 and 𝑣𝐿 into �̇� and �̇� describing 

changes along 𝑥 and 𝑦 as well as �̇� describing changes in 

the robot orientation. However, since 𝑣𝑅 and 𝑣𝐿, do not 

form inputs that are readily available to us in motion, using 

the unicycle model our inputs can be designed to be 𝑣 and 

𝜔 representing translational and angular velocities 

respectively. The model is given by: 

 

�̇� = 𝑣 cos 𝜃 (4) 

�̇� = 𝑣 sin 𝜃 (5) 

�̇� = 𝜔 (6) 

 

Equating both �̇� in Eq. (1) and (4) and diving the through 

by cos 𝜃. We have;  

 

𝑣 =
𝑅

2
(𝜔𝑅 + 𝜔𝐿) ⟹

2𝑣

𝑅
= 𝜔𝑅 + 𝜔𝐿 (7) 

𝜔 =
𝑅

𝐿
(𝜔𝑅 − 𝜔𝐿) ⟹

𝜔𝐿

𝑅
= 𝜔𝑅 − 𝜔𝐿 (8) 

 

From which 𝑣𝑅 and 𝑣𝐿 are obtained as: 

 

𝜔𝑅 =
2𝑣+𝜔𝐿

2𝑅
 ⟹ 𝑣𝑅 =

2𝑣+𝜔𝐿

2
  (9) 

𝜔𝐿 =
2𝑣−𝜔𝐿

2𝑅
 ⟹  𝑣𝐿 =

2𝑣−𝜔𝐿

2
 (10) 

 

Thus, making our inputs governed by the combined action 

of both the linear velocity 𝑣  and the angular velocity 𝑤 . 

Of which, feedbacks are obtained from the wheels as ticks 

representing how many revolutions 𝑠(𝑡𝑖𝑚𝑒,𝑡), and by 

extension, distance 𝑑𝐿, 𝑑𝑅 moved by the robot wheels of 

radius 𝑟 over a certain amount of time. From these, the 

position and orientation are calculated by applying 

geometric techniques [20]. 

 

𝑑𝐿 =
𝑠𝑙(𝑡)−𝑠𝑙(𝑡−1)

𝑛
∗ 2𝜋𝑟 (11) 
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𝑑𝑅 =
𝑠𝑟(𝑡)−𝑠𝑟(𝑡−1)

𝑛
∗ 2𝜋𝑟 (12) 

 

where 𝑛, is the number of ticks of encoder per revolution. 

For analysis, assuming the robot is at some position 

(𝑥0, 𝑦0), headed in a direction making an angle 𝜃 with the 

𝑥 axis as described in Figure 1. From this, we can write: 

 

𝑑𝐿 = 𝑅𝑟Δ𝜃 (13) 

𝑑 = (𝑅𝑟 +
𝐿

2
)Δ𝜃 (14) 

𝑑𝑅 = (𝑅𝑟 + 𝐿)Δ𝜃 (15) 

 

where 𝑅𝑟 is the radius of movement, 𝑑𝐿 and 𝑑𝑅 are arc 

curvature or distance traveled by the left wheel, right 

wheel respectively and 𝑑 is distance described by the 

center. 

Making Δ𝜃 and 𝑑 the subject of the formular yields 

the relations: 

 

Δ𝜃 =
𝑑𝑅−𝑑𝐿

𝐿
 (16) 

𝑑 =
𝑑𝑅+𝑑𝐿

2
 (17) 

 

If distance traveled, 𝑑 taken to be so infinitesimally small 

that it is assumed to be a straight line. We can write the 

change in 𝑥 and 𝑦 to be of the form: 

 

Δ𝑥 = 𝑑 cos 𝜃 (18) 

Δ𝑦 = 𝑑 sin 𝜃 (19) 

 

Since coordinates (𝑥0, 𝑦0) are the known starting point of 

the robot, the new pose is therefore estimated as: 

 

𝑥′ = 𝑥0 + 𝑑 cos 𝜃 (20) 

𝑦′ = 𝑦0 + 𝑑 sin 𝜃 (21) 

 

However, ideally, we may also describe the position of a 

robot capable of moving in a particular direction 𝜃(𝑡) at a 

given velocity 𝑣(𝑡) by integrating Eq. (1), (2) and (3) as: 

 

𝑥(𝑡) =
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) cos 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (22) 

𝑦(𝑡) =
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) sin 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (23) 

𝜃(𝑡) =
1

𝐿
∫ (𝑣𝑅(𝑡) − 𝑣𝐿(𝑡))𝑑𝑡

𝑡

0
 (24) 

 

For the special case of a differential drive robot, the 

odometry which is the means by which we can obtain or 

estimate the pose information of the robot as in 

(𝑥, 𝑦 and 𝜃), essentially tracking the effect of the wheel 

velocities and updating pose accordingly, solving the 

forward kinematics problem is given as: 

 

𝑥(𝑡) = 𝑥0 +
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) cos 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (25) 

𝑦(𝑡) = 𝑦0 +
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) sin 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (26) 

𝜃(𝑡) = 𝜃0 +
1

𝐿
∫ (𝑣𝑅(𝑡) − 𝑣𝐿(𝑡))𝑑𝑡

𝑡

0
 (27) 

 

Unfortunately, we cannot simply specify an arbitrary 

robot pose (𝑥;  𝑦;  𝜃) and find the velocities that will get us 

there as in the inverse kinematics problem since each 

individual wheel contributing to the robot’s motion 

imposes constraints on the robot; which is that it cannot 

directly slide to the side. Described using Eq. (28) from 

Figure 2 below; 

 

Figure 2. Non-holonomic nature 

of the differential drive. 

 

�̇�𝑅 = �̇� cos 𝜃 − �̇� sin 𝜃 = (
𝑅

2
(𝜔𝑅 + 𝜔𝐿) sin 𝜃) cos 𝜃 −

(
𝑅

2
(𝜔𝑅 + 𝜔𝐿) cos 𝜃) sin 𝜃 = 0 (28) 

 

here, 𝜃 is the angle �̇�𝑅 makes with the horizontal axis, 𝑥. 

Implying that the robot indeed cannot move laterally 

along its axle, it will require a more complicated set of 

steering maneuvers. Hence, imposing what is called a non-

holonomic constraint. We may also confirm this by 

checking if the workspace velocity equation in Eq. (28) is 

integrable. Here we have: 

 

𝑓(𝑥, 𝑦, 𝜃) ≠ 0 (29) 

 

2.2. PID 

 

In section 2.1, we showed that our inputs are 

functions of both the linear velocity 𝑣  and the angular 

velocity 𝑤 . Since the linear velocity 𝑣, can be chosen as a 

constant valued number that represents the speed limit of 

our robot, the heading becomes the only controllable 

parameter as seen in Eq. (6). The difference between the 

desired direction and the current direction is known as the 

error and is written in Eq. (30). 

 

𝑒 = 𝜃𝑑 − 𝜃𝑜 (30) 

 

where 𝜃𝑑 is the desired orientation which can be obtained 

using Eq. (31) when waypoints in the form (𝑥𝑔, 𝑦𝑔) are 

provided as goal states for the robot and 𝜃𝑜 is the robot’s 

current orientation. 
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𝜃𝑑 = arctan (
𝑦𝑔−𝑦𝑜

𝑥𝑔−𝑥𝑜
) (31) 

 

or set as 𝜃(𝑡) when 𝑣𝑅 and 𝑣𝐿 are directly inputted as in 

Eq. (27). If a PID is applied to correct this error, 𝑒, as 

shown in Eq. (32), to produce 𝜔 which will help in moving 

the current state to the desired state, Eq. (33).  

 

𝑃𝐼𝐷(𝑒) = Kp𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷�̇�(𝑡) (32) 

ω = PID(e) (33) 

 

where error 𝑒, for correctness, is evaluated such that the 

angle is expected to remain between −𝜋 and 𝜋 to avoid 

ambiguities. 

 

2.3. IMU 

 

Now that we have all that is required to control the 

robot, it is imperative to state that these models only 

describe an ideal scenario where there is no drift or slip in 

the wheels or from the encoder reading. While further 

operating under the assumption that the time under 

consideration is infinitesimally small. In practice however, 

this is not always the case. Although the time can still be 

kept relatively infinitesimal, the slip cannot be so 

programmed. To overcome this, an IMU equipped with 

magnetometer, accelerometer and gyroscope is used 

externally to track the movement and its results fused. The 

plane XY is particularly of interest as the rotation is about 

the Z axis. First, we need to normalize the raw 

accelerometer data as: 

 

𝑎𝑐𝑐𝑒𝑙_𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑎𝑐𝑐𝑒𝑙[𝑥]

√(𝑎𝑐𝑐𝑒𝑙[𝑥]2+ 𝑎𝑐𝑐𝑒𝑙[𝑦]2 + 𝑎𝑐𝑐𝑒𝑙[𝑧]2)
  (34) 

𝑎𝑐𝑐𝑒𝑙_𝑦_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑎𝑐𝑐𝑒𝑙[𝑦]

√(𝑎𝑐𝑐𝑒𝑙[𝑥]2+ 𝑎𝑐𝑐𝑒𝑙[𝑦]2 + 𝑎𝑐𝑐𝑒𝑙[𝑧]2)
  (35) 

 

where acceleration in 𝑋, 𝑌 and 𝑍 directions are given by 

𝑎𝑐𝑐𝑒𝑙[𝑥], 𝑎𝑐𝑐𝑒𝑙[𝑦] and 𝑎𝑐𝑐𝑒𝑙[𝑧] with their resulting 

normalized acceleration in 𝑋 and 𝑌. 

 

 

Figure 3. IMU at tilted position. 

 

If the IMU device is tilted, then the pitch and roll 

angles are not equal to 0°, as seen in Figure 3. The 

magnetic sensor measurements in all direction will need to 

be compensated. Hence, we first obtain the pitch and roll 

angle value as: 

 

𝑝𝑖𝑡𝑐ℎ = asin(𝑎𝑐𝑐𝑒𝑙_𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑)  (36) 

𝑟𝑜𝑙𝑙 =  − asin(
𝑎𝑐𝑐𝑒𝑙_𝑦_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑐𝑜𝑠(𝑝𝑖𝑡𝑐ℎ)
)                  (37) 

 

Next, we calculate the tilt compensated magnetometer in X 

and Y directions as: 

𝑚𝑎𝑔𝑛𝑥𝑐𝑜𝑚𝑝 =  𝑚𝑎𝑔𝑛[𝑥] ∗ cos(𝑝𝑖𝑡𝑐ℎ) +  𝑚𝑎𝑔𝑛[𝑧] ∗

𝑠𝑖𝑛(𝑝𝑖𝑡𝑐ℎ) (38) 

𝑚𝑎𝑔𝑛𝑦𝑐𝑜𝑚𝑝 =  𝑚𝑎𝑔𝑛[𝑥] ∗ 𝑠𝑖𝑛(𝑟𝑜𝑙𝑙) ∗ 𝑠𝑖𝑛(𝑝𝑖𝑡𝑐ℎ)  +

 𝑚𝑎𝑔𝑛[𝑦] ∗ 𝑐𝑜𝑠(𝑟𝑜𝑙𝑙)  −  𝑚𝑎𝑔𝑛[𝑧] ∗ 𝑠𝑖𝑛(𝑟𝑜𝑙𝑙) ∗

𝑐𝑜𝑠(𝑝𝑖𝑡𝑐ℎ) (39) 

 

Finally, the earth’s magnetic north is measured using the 

components of the magnetometer obtained above, from 

which our heading formular can then be written as: 

 

ℎ𝑒𝑎𝑑𝑖𝑛𝑔 =  180 ∗
𝑎𝑡𝑎𝑛2(𝑚𝑎𝑔𝑛𝑦𝑐𝑜𝑚𝑝 ,𝑚𝑎𝑔𝑛𝑥𝑐𝑜𝑚𝑝 )

𝜋
 (40) 

 

This, as well as the obtained longitudinal acceleration 

readings will be used in the sensor fusion model. 

 

2.4. Sensor Fusion 

 

The system is modeled in the UKF to have two 

sensors; IMU’s linear acceleration, angular velocity 

measurement, and heading measurements as well as the 

encoders reading. The state vector is chosen to be: 

 

𝑥𝑛  =

[
 
 
 
 
 
𝑝𝑥

𝑝𝑦

𝜑
𝑣
�̇�
�̇� ]

 
 
 
 
 

=

[
 
 
 
 
 
𝑥 + 𝑣𝑡𝑐𝑜𝑠𝜃
𝑦 + 𝑣𝑡𝑠𝑖𝑛𝜃

𝜃 + 𝑤𝑡
𝑣 + 𝑎𝑡

𝑤
𝑎 ]

 
 
 
 
 

 (41) 

 

where 𝑝𝑥 is the absolute 𝑥 position, 𝑝𝑦 is the absolute 𝑦 

position, 𝜑 is the yaw, 𝑣 is the longitudinal velocity, �̇� is 

the yaw rate and �̇� is the longitudinal acceleration.  

Of which Gaussian noise with covariances 

representing uncertainties in our guess or estimates are 

subsequently introduced. That is: 

 

𝑥𝑛+1  =  𝑓𝑛(𝑥𝑛)  +  𝑢𝑛 (42) 

𝑦𝑛  = ℎ𝑛(𝑥𝑛)  +  𝑣𝑛 (43) 

 

where 𝑢𝑛 is the process noise, 𝑣𝑛 is the measurement 

noise, the process model is 𝑓𝑛 and measurement model is 

ℎ𝑛. 𝑥𝑛+1 is the state vector and its measurement is denoted 

by 𝑦𝑛. Here, we wish to estimate the mean and covariances 

of both the state and its predicted estimated measurement. 
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2.4.1. Unscented Transformation 

 

Suppose we know the mean �̅� and covariance 𝑃 of the 

state 𝑥, which could be either predicted or filtered 

estimates, we can find a set of points with a sample mean 

and covariance equal to �̅�  and 𝑃. the points are called 

sigma points, which are random in the sense that they 

depend on the current estimate of the state and state error 

covariance. We then apply our nonlinear function, Eq. (44), 

to each of these points. Once these are known, the 

calculations are deterministic i.e., no random generators 

are involved. The sample mean and covariance is a good 

estimate of the true mean and covariance of 𝑦. the biggest 

drawback here being the requirement of a matrix square 

root that requires 𝒪(𝑛𝑥
3) operations. 

 

𝑦 =  ℎ(𝑥) (44) 

𝑦𝑖  =  ℎ(𝑥𝑖) (45) 

�̂�𝑢  =
1

2𝑛𝑥
∑ 𝑦𝑖2𝑛𝑥

𝑖=1  (46) 

𝑅�̃�,𝑢 =
1

2𝑛𝑥
∑ (𝑦𝑖 − �̂�𝑢

2𝑛𝑥
𝑖=1 )(𝑦𝑖 − �̂�𝑢)𝑇 (47) 

 

where 𝑦𝑖  represents the output of every sigma point, �̂�𝑢 is 

the unscented estimated mean obtained from the sample 

average and 𝑅�̃�,𝑢 unscented estimated covariance. This 

also applies to the states in estimating its mean and 

covariance. 

  

2.4.2. Unscented Kalman Filter 

 

Although, there are three steps for the unscented 

Kalman filter; the Time update or prediction step, the 

sigma update and lastly, the measurement update or filter 

step. The sigma update step can be skipped with a bit of 

trade off on the accuracy while saving computation i.e., 

only the time update and measurement step are used and 

are shown below: 

where 𝑛 represents time. We start with what the mean and 

covariance initially are at time, 𝑛 =  0: 

 

�̂�0|0 = 𝐸[𝑥𝑜] (48) 

𝑃𝑥,0|0 = ||𝑥0 − �̂�0|0||
2

 (49) 

 

Then, for 𝑛 =   1, … the time update step is 

performed, then the mean is predicted and covariances of 

the state are estimated by running the sigma points into the 

process model, 𝑓𝑛 as seen in Eq. (53). 

 

𝑥𝑛−1
𝑖 = �̂�𝑛|𝑛−1 + �̃�𝑖     for i = 1, … , 2nx (50) 

�̃�𝑛
𝑖 = [𝑟𝑜𝑤𝑖(√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1  )

𝑇
]   for i = 1,… , nx (51) 

�̃�𝑛
𝑖 = − [𝑟𝑜𝑤𝑖(√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1  )

𝑇
]   for i = nx + 1,… , 2nx  

 (52) 

�̂�𝑛
𝑖 = 𝑓𝑛(�̂�𝑛−1

𝑖 ) (53) 

�̂�𝑛|𝑛−1  =
1

2𝑛𝑥
∑ �̂�𝑛

𝑖2𝑛𝑥
𝑖=1  (54) 

𝑃𝑥,𝑛|𝑛−1 =
1

2𝑛𝑥
∑ (�̂�𝑛

𝑖 − �̂�𝑛|𝑛−1
2𝑛𝑥
𝑖=1 )(�̂�𝑛

𝑖 − �̂�𝑛|𝑛−1)
𝑇 (55) 

 

where a 𝑟𝑜𝑤𝑖(𝐴) denotes the 𝑖 𝑡ℎ row vector of the matrix 

𝐴 and √𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1 is a matrix square root of 

(𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1) such that 

√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1

𝑇
√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1 = 𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1. 𝑛𝑥 is the 

dimension of the state vector, �̂�𝑛|𝑛−1 is the estimate of the 

mean and covariance 𝑃�̃�,𝑛−1|𝑛−1 of the state error 

covariance at time 𝑛 − 1, lastly, 𝑥𝑛−1
𝑖 , represents the sigma 

point. Next, the measurement update is performed. Again, 

the predicted estimates are taken and then run through the 

measurement model ℎ𝑛 to obtain the measurement sigma 

points, 𝑦𝑛
𝑖 . Then the predicted estimated value of the 

measurement, �̂�𝑛|𝑛−1 which is the sample average of the 

sigma points are calculated. 𝑅𝑛−1 covariance representing 

the gaussian noise for each sensors introduced. It is a 

diagonal matrix. We also use a covariance 𝑃𝑥�̃� that is a 

combination of the state sigma points and the measurement 

sigma points to obtain the Kalman gain, 𝐾𝑛. This gain 

factor is basically used to decide final value for robot state. 

Subsequently we update the predicted state estimates and 

covariance. 

 

𝑦𝑛
𝑖 =  ℎ𝑛(𝑥𝑛

𝑖 ) (56) 

�̂�𝑛|𝑛−1  =
1

2𝑛𝑥
∑ 𝑦𝑛

𝑖2𝑛𝑥
𝑖=1  (57) 

𝑃�̃� =
1

2𝑛𝑥
∑ (𝑦𝑛

𝑖 − �̂�𝑛|𝑛−1
2𝑛𝑥
𝑖=1 )(𝑦𝑛

𝑖 − �̂�𝑛|𝑛−1)
𝑇 + 𝑅𝑛−1 (58) 

𝑃𝑥�̃� =
1

2𝑛𝑥
∑ (𝑥𝑛

𝑖 − �̂�𝑛|𝑛−1
2𝑛𝑥
𝑖=1 )(𝑦𝑛

𝑖 − �̂�𝑛|𝑛−1)
𝑇 (59) 

𝐾𝑛 = 𝑃𝑥�̃�𝑃�̃�
−1 (60) 

�̂�𝑛|𝑛  = �̂�𝑛|𝑛−1 + 𝐾𝑛(𝑦𝑛 − �̂�𝑛|𝑛−1)  (61) 

𝑃𝑥,𝑛|𝑛 = 𝑃𝑥,𝑛|𝑛−1 − 𝐾𝑛𝑃�̃�𝐾𝑛
𝑇 (62) 

 

There are however other ways of evaluating sigma 

points e.g, upon computation of some scaling parameter, 𝜆 

which is a function of 𝑛𝑥. For this, in the place of 
1

2𝑛𝑥
 the 

corresponding mean and covariance weights 𝑊𝑖 are used. 

Every other thing does remain the same; calculate sigma 

points, time update, and measurement update wherein the 

final state represents the desired vectors. The UKF is 

favored as it facilitates implementation of the algorithms as 

non-linear transformations of a set of deterministically 

chosen sigma points which replaces calculations of 

Jacobian matrices [21]. 
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2.5. Map Making 

 

Basically, the Lidar obtains coordinates of static or 

non-dynamic obstructions as polar co-ordinates (𝑟, 𝜃) 

representing to what degree away from a specific datum 

within itself that it has spun. Hence, points of the Lidar’s 

reading that falls below or within the Lidar’s view-finder’s 

range are collected and saved as landmarks, as the robot 

moves. In addition, every collected point is mapped or 

appended to the robot’s location (𝑥𝑖 , 𝑦𝑖) at the time it was 

collected. The robot can be controlled to all locations of 

interest and an array of landmarks and corresponding robot 

locations are generated which are then casted into bytes to 

which an occupancy map can be created. 

More specifically, the algorithm used is a variant of 

the CoreSLAM [2], and is called BreezySLAM [3], 

developed to implement a simple SLAM that can be 

integrated into a filter-based localization subsystem. This 

algorithm however, includes the use of the Random-

Mutation Hill-Climbing search where a position S is 

initialized by m randomly selected instances from T. For 

each iteration, the algorithm randomly replaces one 

instance in S by another randomly selected instance in T – 

S. If this replacement can improve the predictive accuracy 

of the instances in T, the change will be retained [22]. This 

process is repeated for p times, where p is the maximum 

search iterations possible. This helps in establishing a 

better robot position based on a starting position as 

opposed the Monte Carlo localization (MCL). While, for 

each obstacle detected, the algorithm does not draw a 

single point, but a function with a hole whose lower point 

is at the position of the obstacle resulting in a grey-level 

map with holes dug to represent obstacle likelihood [2]. 

Bresenham algorithm is used to draw the view finder’s 

rays. Furthermore, the conversion from real-world meters 

to pixels is also afforded the user. In this study, total map 

size in pixels and its equivalent in meters were chosen as 

1000 and 10𝑚 respectively. Lastly, while the map 

algorithm is open loop, although not always required, the 

image generated may be further processed for a more 

perfect representation, in this case, with Opencv.  

 

2.6. A-star  

 

The name is derived from the algorithm being an 

optimal form of another common graph-search algorithm 

known as ‘𝐴’. Three functions are of interest and are given 

as the heuristic; a simple calculation of the distance or 

cost-to-go from the current node to the nth node or end 

node. It is often denoted by 𝐻(𝑛) and may employ 

different methods in obtaining a best estimate of the 

measured distance, in this case, Manhattan distance was 

selected. The function 𝐺(𝑛); representing the estimate of 

the cost-to-come i.e., path cost estimate from start node to 

node under consideration or current node. Lastly, 𝐹(𝑛), 

which is the sum of the cost-to-go and cost-to-come, Eq. 

(63).  

 

𝐹(𝑛)  =  𝐺(𝑛)  +  𝐻(𝑛)  (63) 

 

The 𝐹(𝑛) helps in prioritizing which node to move 

next upon looking up the queue in the open-set of available 

nodes for the node with the smallest F score. The open-set 

is an array of tuples of available nodes to move and their 

corresponding F scores, when at any given node of 

interest. An item is pulled from the open-set and expanded 

only once it has been selected, to which an open-set is 

generated again. Nodes can be thought of as grid co-

ordinates or map intersects. In the end the taken path is 

made into an array of co-ordinates representing the best 

shortest distance from the start point to a goal or target 

point. These co-ordinates are what are called waypoints. 

The overall low computation time and the guarantee of 

producing optimal paths makes for A-star’s selection for 

this study. The algorithm is demonstrated using Figure 4 

below: 

 

Figure 4. State transition graph 

illustrating the operation of the A-star. 

 

Node A has two available nodes connected hence path AB 

and AC are considered and the respective 𝐹(𝑛) compared. 

Assuming all grid connectors have edge of 1 unit as they 

are equally spaced. It follows that: 

 AB: cost-to-come, 𝐺(𝑛), 1, representing the unit or 

edge of the path between A and B. then cost-to-go, 

𝐻(𝑛), the heuristic, an estimate of the distance to the 

end or target point, C, also 1. Hence, from Eq. (63), 

𝐹(𝑛)  =  2. 

  AC: cost-to-come, (𝑛), 1, representing the unit or 

edge of the path between A and C. then cost-to-go, 

𝐻(𝑛), the heuristic, an estimate of the distance to the 

end or target point, C, which is itself. Hence, 0. 

Therefore, 𝐹(𝑛)  =  1. 

 The open-set will contain; [(2, 𝐵), (1, 𝐶)]. To which the 

candidate with the lowest F score, C, is selected and 

popped from the list. Hence, path chosen is A  C.   

The map under consideration is an extract of the 

BreezySLAM generated image and processed using 
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Opencv in order to threshold the image. i.e., binarize; make 

it an image of just free spaces (white) and walls or 

obstructions (black). On this new map, co-ordinates 

become pixels to which the start point and goal point may 

be specified. The algorithm is run such that it checks a 

node or pixel’s neighbor and avoids them if they are below 

a specified color threshold, in this case black pixels, then 

maps a path around it, i.e., path is strictly traced on the 

white spaces. 

 

2.7. Obstacle Avoidance 

 

The A-star algorithm generates waypoints for which 

already satisfies the avoidance of walls and other static 

obstacles. However, dynamic obstacles are not accounted 

and as such requires being addressed; when the Lidar or 

ultrasonic sensor detects an obstacle within a certain view 

range and angle, while the robot follows this predefined 

path, it first checks the distance between its current 

position and the next goal or target state in the waypoint, 

call it 𝑝2𝑡 and compares it against the distance between its 

current position and the obstacle, 𝑝2𝑜. If the distance 𝑝2𝑜 

is greater; it implies that the obstacle does not constitute an 

hinderance to its current trajectory hence, it is ignored. 

However, if 𝑝2𝑡 is greater, a function is called that places a 

circle of a specified radius on the obstacle’s location and 

draws a line tangential to the circle. The co-ordinate of the 

point of tangency is collected and appended to the 

waypoint as an intermediate stop for the robot to avoid the 

obstacle. The algorithm is demonstrated using Figure 5 

below: 

 

Figure 5. Obstacle avoidance illustration. 

 

Let waypoint1 co-ordinate be (𝑥1, 𝑦1) and obstacle co-

ordinate be (𝑥𝑜 , 𝑦𝑜) . Then let a line w1o exist between 

these points, to which its center co-ordinate is 

(
𝑥1+ 𝑥𝑜

2
 ;

𝑦1+ 𝑦𝑜

2
). Finally, let the distance between the 

center co-ordinate of w1o and (𝑥𝑜, 𝑦𝑜) be d. 

1. Iterate for 𝑥 from 0 to (ℎ + 𝑟) and 𝑦 from 0 to (𝑘 + 𝑟), 

in circle equation, (𝑥 − ℎ)2  +  (𝑦 − 𝑘)2  =  𝑟2 with 

center co-ordinate of w1o as the origin (ℎ, 𝑘) and d as 

radius, r. and save all generated circle co-ordinates as 

tuples of an array, B. 

2. Iterate for 𝑥 from 0 to (ℎ + 𝑟) and 𝑦 from 0 to (𝑘 + 𝑟), 

in circle equation, (𝑥 − ℎ)2  +  (𝑦 − 𝑘)2  =  𝑟2 with 

obstacle co-ordinate as the origin (ℎ, 𝑘) and safety 

_radius as radius, r. and save all generated circle co-

ordinates as tuples of an array, C. 

3. Compare arrays B and C and extract the two common 

co-ordinates marking the intersection of both circles, 

tuple co-ordinates w1i1 and w1i2. 

4. Repeat 1 – 5 for waypoint 2 as w2o and extract arrays 

w2i1 and w2i2 intersection points. 

5. Using the line equation, 𝑦 − 𝑦1  =  𝑚(𝑥 − 𝑥1), where 

(𝑥1, 𝑦1) is w1o and 𝑚 is the gradient obtained between 

w1o and intersection w1i1.  

6. Similarly, 𝑦 − 𝑦1  =  𝑚(𝑥 − 𝑥1), where (𝑥1, 𝑦1) is w2o 

and 𝑚 is the gradient obtained between w2o and 

intersection w2i1.  

7. Iterate for 𝑥 and 𝑦 in both cases to maximum limit 

above the sum of radius of both circles and save in an 

array, w1l and w2l. Like in steps 1 and 2. 

8. Compare w1l and w2l for a single point of intersection, 

i.e., waypoint wpi1.  

9. Depending on the desired robot behavior; repeat steps 5, 

6, 7 and 8 with the respective second point of 

intersection to wpi2. Decide which new waypoint, 

wpi1 or wpi2 to append as intermediary between 

waypoint1 and waypoint2.  

 

2.8. Experimental Setup 

 

Overall, the setup shown in Figure 6 includes: 

 Raspberry pi  

 Lidar 

 Motor x2 

 Incremental Encoder x2 

 Ultrasonic sensor 

 IMU 

 L298n motor driver 

 

 

Figure 6. The assembled mobile robot. 

 

The experiment was carried out in a room of size 5 by 

4.4 m, with wooden demarcations which constituted part of 

the stationary obstacle, while the room’s door opens to a 

corridor of about 6 by 1.2 m. Maximum and minimum 
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motor speed limits are set. The PID constants 𝐾𝑝 = 10, 

𝐾𝑖 = 0.01, and 𝐾𝑑 = 0.1, as well as the previous error and 

cumulative error for the calculation of the differential and 

integral errors respectively, were initialized at 0. The 

robot’s dimensions (width, wheel radius etc.) were also 

initialized before the algorithm is run on the raspberry. 

As the robot move, the encoder’s feedback in 

combination with the IMU’s data is served as input values 

into motion equations satisfying Eq. (41), to which state 

information is predicted. Furthermore, this information is 

then fed into the SLAM algorithm that obtains Lidar data 

and mapping ensues. Simultaneously, the PID is employed 

to correct the difference between the theoretical target state 

and the real-world execution. This generates a corrected 𝑤 

that helps in updating the robot’s pose before the whole 

process is repeated until a satisfactory map is obtained by 

the user. 

 

3. Results and Discussion 

 

Two main use cases are foreseen; Firstly, the user 

controls the robot around the intended spaces and the 

robot, as it moves, localizes, and generates a map as 

depicted in Figure 7 (Map 1-6), then saves the last copy of 

the generated map when satisfactory. Secondly, the user 

specifies any target co-ordinates or points within the map, 

declared as start and stop pixel co-ordinates respectively. 

The saved image, Figure 7 (Map 7), is then binarized by 

the robot, Figure 7 (Map 8), and a path is generated, and 

subsequently traced by the robot as seen in Figure 8. 

 

 
Figure 7. First use case or scenario. 

 
Figure 8. Second use case or scenario. 

 

The measurement factors here would be the robot’s 

ability to accomplish a mission or task without interaction 

with a human operator (i.e., navigate autonomously), as 

well as the closeness between the A-star algorithm 

generated path (AGP) in the form of waypoints and the 

robot’s real traced path (RTP) with and without sensor 

fusion, implying its accuracy. Although, its ability to alter 
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said waypoints if only to avoid dynamic obstacles is 

implied. 

With its real-time progress shown in Figure 8, its 

behavior as observed is plotted in Figure 9, and 10. 

Essentially, indicating a success in the intention of the 

study, to some degree of accuracy, also estimated.  

 

Figure 9. Performance for a straight trajectory (without 

sensor fusion). 

 

 

Figure 10. Performance for a straight trajectory (with 

sensor fusion). 
 

In order to estimate the error, the mean deviation 

representing the average absolute deviation of points of the 

RTP from the AGP is calculated. For this, the mean 

Euclidean distance which is the sum of Euclidean distance 

at each corresponding point divided by the total number of 

the corresponding points, 𝑛, is employed. 

 

�̅� =
∑ (√(𝑥𝑎𝑔𝑝−𝑥𝑟𝑡𝑝)2+(𝑦𝑎𝑔𝑝−𝑦𝑟𝑡𝑝)2)𝑛

𝑖=0

𝑛
 (64) 

 

where (𝑥𝑎𝑔𝑝 , 𝑦𝑎𝑔𝑝) are A-star algorithm’s generated path 

co-ordinates and (𝑥𝑟𝑡𝑝, 𝑦𝑟𝑡𝑝) represents the robot’s real 

traced path co-ordinates.  

 

 

The closer the estimates are to zero, the more 

accurate the trace is. Using Eq. (64) with four sample 

corresponding waypoints for AGP and RTP from Figure 9, 

and 10. 

 

Table 1. Average Euclidean Distance Error. 

Implementation 
Average Euclidean 

Distance error (m) 

Without sensor fusion 1.5 

With sensor fusion 0.45 

 

Table 1 shows the estimated error of the localization 

implementation. With the inclusion of sensor fusion 

bringing the error closer to zero, offering a comparative 

accuracy of about 70%. 

The robot’s behaviour is further demonstrated in 

Figure 11 for a zig-zag trajectory as the rigidity of the A-

star algorithm does not allow for shapes such as square, 

circle etc. to be naturally selected. The algorithm resorts to 

finding the optimal path to the goal which may not 

necessarily be square, circular etc. 

 
Figure 11. Performance for a zig-zag trajectory (with 

sensor fusion). 

 

4. Conclusions  

 

A differential drive robot with natural navigation was 

designed. The aim of which was educational, i.e., to ease 

intending engineer’s approach on steps and calculations to 

be implemented for designing indoor mobile robots. The 

basic steps followed have been outlined and are 

reproducible. The code is also made available on GitHub, 

in python and is integrable in parts or as a whole in other 

differential drive robot related projects. 

This study uses sensor fusion to limit the drift errors 

associated with encoder wheel odometry as it combines its 

results with the IMU. This in turn, successfully increased 

the accuracy of the localization and helped in map 
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creation. The natural navigation also included an ability to 

move from one specified point to another within the map 

while avoiding obstacle; this was achieved with the use of 

A-star search algorithm for the best estimated path and a 

tangency approach to avoiding obstacle. The approach 

utilized in this paper offers a not-so-simple yet not-so-

complex combination of techniques that are 

computationally efficient and fast. However, more 

generally, the PID constant’s values and the covariance 

matrix values of the sensors could be fine-tuned, with a 

further inclusion of the sigma update step in the UKF, for a 

more accurate trace. While employing a more flexible path 

search algorithm or technique might do even better for the 

robot’s behavior. 

Furthermore, in the future, the necessary research will 

be done to evaluate the best steps to analysis for stresses, 

feasible materials, weight considerations as well as 

aesthetics, also aimed at easing its integration for intending 

engineers designing mobile robots.  
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