
73

 Koc. J. Sci. Eng., 5(1): (2022) 73-83 https://doi.org/10.34088/kojose.1012914

Kocaeli University

 Kocaeli Journal of Science and Engineering

http://dergipark.org.tr/kojose

Natural Navigation System Design for Indoor Mobile Robots

F. Azeez ADEBAYO 1, * , H. Metin ERTUNÇ 2

1 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0002-8160-6949
2 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0003-1874-3104

Article Info

Research paper

Received : October 21, 2021

Accepted : February 07, 2022

Keywords

Simultaneous Localization and
Mapping

Indoor Natural Navigation

Sensor Fusion
PID

Differential Drive Robot

 Abstract

Natural navigation simply refers to free navigation without the necessity of tapes, magnets,

reflectors, or even wires. Many autonomous vehicles possess this as world maps are readily

available and provide a perfect basis for machine learning solutions. However, this is not so much

the case for indoor applications. Here, paths are often dynamic and more constrained; therefore,

requiring the continuous identification, mapping and localization of the surrounding area. This work

focuses on developing an indoor natural navigation system; the localization is achieved with a

fusion of the wheel’s odometry to the on-board Inertial Measurement Unit (IMU i.e., a combination

of relative localization and absolute localization) using Unscented Kalman Filter (UKF) as system’s

encoder’s accumulation of errors is desired to be nullified while employing a PID control in

correcting reference state errors. The map is simultaneously constructed using laws of geometry

based on static points obtained from a Lidar, subsequently converted to an occupancy grid layout for

effective path planning. In operation, tangency is applied in the avoidance of dynamic obstacles.

The simulation results obtained in this study confirms the possibility of a simple, educational,

indoor navigation system approach easily integrable by other mobile robots of the differential drive

model.

1. Introduction*

Various studies have gone into autonomous

navigation in vehicles for both indoor and outdoor use

cases. These studies, while they have without doubt

contributed to the success recorded in this area, also offer

execution of complex equations and algorithms, which has

made its adoption difficult and ultimately, hinder their

reproducibility. Indoor mobile robot navigation particularly

suffers here as the lack of satellite positioning signals, so

discussed in [1] implies its localization and mapping calls

for the inclusion of more sensors in its determination

which further complicates and compounds the equations.

In this study, we attempt to build a simple indoor

differential drive robot, using simplified steps and

equations, for a better understanding of the literature, and

to ultimately, ensure reproducibility in any coding

language. A LiDAR-based navigation technology called

* Corresponding Author: hazeezadebayo@gmail.com

CoreSLAM [2] was studied and its variation,

BreezySLAM [3] is implemented to generate an occupancy

grid map [4] for which the robot will operate. Its feasibility

and performance relative to other SLAM techniques is

evaluated in [5].

Due to the accumulation of noise leading to drift

errors that is accompanied by the use of encoder’s wheel

odometry alone in localization, a sensor fusion technique

with the Unscented Kalman Filter, is applied to combine its

results with an IMU [6-7]. The UKF, like the other filters

such as Kalman, extended Kalman filter used in combining

data of various sensors of similar targets, has been shown

in [8] to require very basic governing equations on

orientation and position in order to estimate robot states.

In getting the robot to move from one desired place to

another, the A-star algorithm from [9] is employed. The

algorithm plots the shortest walkable path between nodes,

in this study, map pixels, depending on the distance

measurement technique selected; Manhattan, Euclidean,

etc. Also, the suitability of PID in minimizing error

between target and reference robot speed state has been

2667-484X © This paper published in Kocaeli Journal of Science and Engineering is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License

https://orcid.org/0000-0002-8160-6949
https://orcid.org/0000-0003-1874-3104
https://doi.org/10.34088/kojose.517520
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

74

established in [10] while a simple Tangency approach is

selected in avoiding obstacles as the need for a non-

infrastructural change and cost-free solution is imperative.

The results obtained in this study showed a 70%

improvement in path following accuracy of the sensor

fused algorithm over the use of wheel odometry alone.

This is further corroborated in [7], where for the square

trajectory tested, an accuracy of 66.5% was observed, and

a similar result is depicted in [11].

Similar works have also been demonstrated with

some variation of the above techniques depending on the

choice of sensor, often involving but not limited to; visual

SLAM with cameras, sonar-based localization, or some

hybrid integration into neural networks [11-15], as well as

other combinations with more additions in terms of

complexity and constraints, as in the use of RFID, Wi-Fi or

Bluetooth whose accuracy and performance depends on

implementing other external structures such as receivers

[16-19]. The next section will highlight the methodology

as well as offer calculation justifications in the design or

the differential drive robot. After that, a section on results,

followed by conclusions and recommendations marks the

end of the paper.

2. Materials and Methods

2.1. Kinematics of Differential Drive Robot

The basic configuration of the mobile robot is with

two drive wheels with encoders mounted on them and a

free castor wheel for its stability. Drive wheels can be

controlled independently, and they maintain a common

axis as shown in Figure 1.

Figure 1. Differential Drive.

The kinematic model of differential drive mobile

robot is therefore given by the relations:

�̇� =
𝑣𝑅+𝑣𝐿

2
cos 𝜃 =

𝑅

2
(𝜔𝑅 + 𝜔𝐿) cos 𝜃 (1)

�̇� =
𝑣𝑅+𝑣𝐿

2
sin 𝜃 =

𝑅

2
(𝜔𝑅 + 𝜔𝐿) sin 𝜃 (2)

�̇� =
𝑣𝑅−𝑣𝐿

𝐿
=

𝑅

𝐿
(𝜔𝑅 − 𝜔𝐿) (3)

where; 𝜔𝑅 is rate at which right wheel is turning, 𝜔𝐿 is rate

at which left wheel is turning, 𝑅 is radius of the wheels,

and 𝐿 is the wheel base distance.

 Three notable cases associated with the differential

drive are also stated below:

 When 𝑣𝑅 = 𝑣𝐿, the robot moves in a straight line either

forward or backward depending on the direction of

wheel rotation.

 When 𝑣𝑅 = 0, the robot moves about the right wheel

and about the left wheel when 𝑣𝐿 = 0. The robot will

always move about the wheel with the smallest

velocity and while this helps in steering, small errors

in the relative velocities between the wheels can affect

the robot trajectory.

 When 𝑣𝑅 = −𝑣𝐿, the robot rotates about the midpoint of

the wheel.

Implementing this model helps us in translating from right

and left wheel velocities, 𝑣𝑅 and 𝑣𝐿 into �̇� and �̇� describing

changes along 𝑥 and 𝑦 as well as �̇� describing changes in

the robot orientation. However, since 𝑣𝑅 and 𝑣𝐿, do not

form inputs that are readily available to us in motion, using

the unicycle model our inputs can be designed to be 𝑣 and

𝜔 representing translational and angular velocities

respectively. The model is given by:

�̇� = 𝑣 cos 𝜃 (4)

�̇� = 𝑣 sin 𝜃 (5)

�̇� = 𝜔 (6)

Equating both �̇� in Eq. (1) and (4) and diving the through

by cos 𝜃. We have;

𝑣 =
𝑅

2
(𝜔𝑅 + 𝜔𝐿) ⟹

2𝑣

𝑅
= 𝜔𝑅 + 𝜔𝐿 (7)

𝜔 =
𝑅

𝐿
(𝜔𝑅 − 𝜔𝐿) ⟹

𝜔𝐿

𝑅
= 𝜔𝑅 − 𝜔𝐿 (8)

From which 𝑣𝑅 and 𝑣𝐿 are obtained as:

𝜔𝑅 =
2𝑣+𝜔𝐿

2𝑅
 ⟹ 𝑣𝑅 =

2𝑣+𝜔𝐿

2
 (9)

𝜔𝐿 =
2𝑣−𝜔𝐿

2𝑅
 ⟹ 𝑣𝐿 =

2𝑣−𝜔𝐿

2
 (10)

Thus, making our inputs governed by the combined action

of both the linear velocity 𝑣 and the angular velocity 𝑤 .

Of which, feedbacks are obtained from the wheels as ticks

representing how many revolutions 𝑠(𝑡𝑖𝑚𝑒,𝑡), and by

extension, distance 𝑑𝐿, 𝑑𝑅 moved by the robot wheels of

radius 𝑟 over a certain amount of time. From these, the

position and orientation are calculated by applying

geometric techniques [20].

𝑑𝐿 =
𝑠𝑙(𝑡)−𝑠𝑙(𝑡−1)

𝑛
∗ 2𝜋𝑟 (11)

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

75

𝑑𝑅 =
𝑠𝑟(𝑡)−𝑠𝑟(𝑡−1)

𝑛
∗ 2𝜋𝑟 (12)

where 𝑛, is the number of ticks of encoder per revolution.

For analysis, assuming the robot is at some position

(𝑥0, 𝑦0), headed in a direction making an angle 𝜃 with the

𝑥 axis as described in Figure 1. From this, we can write:

𝑑𝐿 = 𝑅𝑟Δ𝜃 (13)

𝑑 = (𝑅𝑟 +
𝐿

2
)Δ𝜃 (14)

𝑑𝑅 = (𝑅𝑟 + 𝐿)Δ𝜃 (15)

where 𝑅𝑟 is the radius of movement, 𝑑𝐿 and 𝑑𝑅 are arc

curvature or distance traveled by the left wheel, right

wheel respectively and 𝑑 is distance described by the

center.

Making Δ𝜃 and 𝑑 the subject of the formular yields

the relations:

Δ𝜃 =
𝑑𝑅−𝑑𝐿

𝐿
 (16)

𝑑 =
𝑑𝑅+𝑑𝐿

2
 (17)

If distance traveled, 𝑑 taken to be so infinitesimally small

that it is assumed to be a straight line. We can write the

change in 𝑥 and 𝑦 to be of the form:

Δ𝑥 = 𝑑 cos 𝜃 (18)

Δ𝑦 = 𝑑 sin 𝜃 (19)

Since coordinates (𝑥0, 𝑦0) are the known starting point of

the robot, the new pose is therefore estimated as:

𝑥′ = 𝑥0 + 𝑑 cos 𝜃 (20)

𝑦′ = 𝑦0 + 𝑑 sin 𝜃 (21)

However, ideally, we may also describe the position of a

robot capable of moving in a particular direction 𝜃(𝑡) at a

given velocity 𝑣(𝑡) by integrating Eq. (1), (2) and (3) as:

𝑥(𝑡) =
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) cos 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (22)

𝑦(𝑡) =
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) sin 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (23)

𝜃(𝑡) =
1

𝐿
∫ (𝑣𝑅(𝑡) − 𝑣𝐿(𝑡))𝑑𝑡

𝑡

0
 (24)

For the special case of a differential drive robot, the

odometry which is the means by which we can obtain or

estimate the pose information of the robot as in

(𝑥, 𝑦 and 𝜃), essentially tracking the effect of the wheel

velocities and updating pose accordingly, solving the

forward kinematics problem is given as:

𝑥(𝑡) = 𝑥0 +
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) cos 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (25)

𝑦(𝑡) = 𝑦0 +
1

2
∫ (𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)) sin 𝜃(𝑡) 𝑑𝑡

𝑡

0
 (26)

𝜃(𝑡) = 𝜃0 +
1

𝐿
∫ (𝑣𝑅(𝑡) − 𝑣𝐿(𝑡))𝑑𝑡

𝑡

0
 (27)

Unfortunately, we cannot simply specify an arbitrary

robot pose (𝑥; 𝑦; 𝜃) and find the velocities that will get us

there as in the inverse kinematics problem since each

individual wheel contributing to the robot’s motion

imposes constraints on the robot; which is that it cannot

directly slide to the side. Described using Eq. (28) from

Figure 2 below;

Figure 2. Non-holonomic nature

of the differential drive.

�̇�𝑅 = �̇� cos 𝜃 − �̇� sin 𝜃 = (
𝑅

2
(𝜔𝑅 + 𝜔𝐿) sin 𝜃) cos 𝜃 −

(
𝑅

2
(𝜔𝑅 + 𝜔𝐿) cos 𝜃) sin 𝜃 = 0 (28)

here, 𝜃 is the angle �̇�𝑅 makes with the horizontal axis, 𝑥.

Implying that the robot indeed cannot move laterally

along its axle, it will require a more complicated set of

steering maneuvers. Hence, imposing what is called a non-

holonomic constraint. We may also confirm this by

checking if the workspace velocity equation in Eq. (28) is

integrable. Here we have:

𝑓(𝑥, 𝑦, 𝜃) ≠ 0 (29)

2.2. PID

In section 2.1, we showed that our inputs are

functions of both the linear velocity 𝑣 and the angular

velocity 𝑤 . Since the linear velocity 𝑣, can be chosen as a

constant valued number that represents the speed limit of

our robot, the heading becomes the only controllable

parameter as seen in Eq. (6). The difference between the

desired direction and the current direction is known as the

error and is written in Eq. (30).

𝑒 = 𝜃𝑑 − 𝜃𝑜 (30)

where 𝜃𝑑 is the desired orientation which can be obtained

using Eq. (31) when waypoints in the form (𝑥𝑔, 𝑦𝑔) are

provided as goal states for the robot and 𝜃𝑜 is the robot’s

current orientation.

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

76

𝜃𝑑 = arctan (
𝑦𝑔−𝑦𝑜

𝑥𝑔−𝑥𝑜
) (31)

or set as 𝜃(𝑡) when 𝑣𝑅 and 𝑣𝐿 are directly inputted as in

Eq. (27). If a PID is applied to correct this error, 𝑒, as

shown in Eq. (32), to produce 𝜔 which will help in moving

the current state to the desired state, Eq. (33).

𝑃𝐼𝐷(𝑒) = Kp𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷�̇�(𝑡) (32)

ω = PID(e) (33)

where error 𝑒, for correctness, is evaluated such that the

angle is expected to remain between −𝜋 and 𝜋 to avoid

ambiguities.

2.3. IMU

Now that we have all that is required to control the

robot, it is imperative to state that these models only

describe an ideal scenario where there is no drift or slip in

the wheels or from the encoder reading. While further

operating under the assumption that the time under

consideration is infinitesimally small. In practice however,

this is not always the case. Although the time can still be

kept relatively infinitesimal, the slip cannot be so

programmed. To overcome this, an IMU equipped with

magnetometer, accelerometer and gyroscope is used

externally to track the movement and its results fused. The

plane XY is particularly of interest as the rotation is about

the Z axis. First, we need to normalize the raw

accelerometer data as:

𝑎𝑐𝑐𝑒𝑙_𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑎𝑐𝑐𝑒𝑙[𝑥]

√(𝑎𝑐𝑐𝑒𝑙[𝑥]2+ 𝑎𝑐𝑐𝑒𝑙[𝑦]2 + 𝑎𝑐𝑐𝑒𝑙[𝑧]2)
 (34)

𝑎𝑐𝑐𝑒𝑙_𝑦_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑎𝑐𝑐𝑒𝑙[𝑦]

√(𝑎𝑐𝑐𝑒𝑙[𝑥]2+ 𝑎𝑐𝑐𝑒𝑙[𝑦]2 + 𝑎𝑐𝑐𝑒𝑙[𝑧]2)
 (35)

where acceleration in 𝑋, 𝑌 and 𝑍 directions are given by

𝑎𝑐𝑐𝑒𝑙[𝑥], 𝑎𝑐𝑐𝑒𝑙[𝑦] and 𝑎𝑐𝑐𝑒𝑙[𝑧] with their resulting

normalized acceleration in 𝑋 and 𝑌.

Figure 3. IMU at tilted position.

If the IMU device is tilted, then the pitch and roll

angles are not equal to 0°, as seen in Figure 3. The

magnetic sensor measurements in all direction will need to

be compensated. Hence, we first obtain the pitch and roll

angle value as:

𝑝𝑖𝑡𝑐ℎ = asin(𝑎𝑐𝑐𝑒𝑙_𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) (36)

𝑟𝑜𝑙𝑙 = − asin(
𝑎𝑐𝑐𝑒𝑙_𝑦_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑐𝑜𝑠(𝑝𝑖𝑡𝑐ℎ)
) (37)

Next, we calculate the tilt compensated magnetometer in X

and Y directions as:

𝑚𝑎𝑔𝑛𝑥𝑐𝑜𝑚𝑝 = 𝑚𝑎𝑔𝑛[𝑥] ∗ cos(𝑝𝑖𝑡𝑐ℎ) + 𝑚𝑎𝑔𝑛[𝑧] ∗

𝑠𝑖𝑛(𝑝𝑖𝑡𝑐ℎ) (38)

𝑚𝑎𝑔𝑛𝑦𝑐𝑜𝑚𝑝 = 𝑚𝑎𝑔𝑛[𝑥] ∗ 𝑠𝑖𝑛(𝑟𝑜𝑙𝑙) ∗ 𝑠𝑖𝑛(𝑝𝑖𝑡𝑐ℎ) +

 𝑚𝑎𝑔𝑛[𝑦] ∗ 𝑐𝑜𝑠(𝑟𝑜𝑙𝑙) − 𝑚𝑎𝑔𝑛[𝑧] ∗ 𝑠𝑖𝑛(𝑟𝑜𝑙𝑙) ∗

𝑐𝑜𝑠(𝑝𝑖𝑡𝑐ℎ) (39)

Finally, the earth’s magnetic north is measured using the

components of the magnetometer obtained above, from

which our heading formular can then be written as:

ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 180 ∗
𝑎𝑡𝑎𝑛2(𝑚𝑎𝑔𝑛𝑦𝑐𝑜𝑚𝑝 ,𝑚𝑎𝑔𝑛𝑥𝑐𝑜𝑚𝑝)

𝜋
 (40)

This, as well as the obtained longitudinal acceleration

readings will be used in the sensor fusion model.

2.4. Sensor Fusion

The system is modeled in the UKF to have two

sensors; IMU’s linear acceleration, angular velocity

measurement, and heading measurements as well as the

encoders reading. The state vector is chosen to be:

𝑥𝑛 =

[

𝑝𝑥

𝑝𝑦

𝜑
𝑣
�̇�
�̇�]

=

[

𝑥 + 𝑣𝑡𝑐𝑜𝑠𝜃
𝑦 + 𝑣𝑡𝑠𝑖𝑛𝜃

𝜃 + 𝑤𝑡
𝑣 + 𝑎𝑡

𝑤
𝑎]

 (41)

where 𝑝𝑥 is the absolute 𝑥 position, 𝑝𝑦 is the absolute 𝑦

position, 𝜑 is the yaw, 𝑣 is the longitudinal velocity, �̇� is

the yaw rate and �̇� is the longitudinal acceleration.

Of which Gaussian noise with covariances

representing uncertainties in our guess or estimates are

subsequently introduced. That is:

𝑥𝑛+1 = 𝑓𝑛(𝑥𝑛) + 𝑢𝑛 (42)

𝑦𝑛 = ℎ𝑛(𝑥𝑛) + 𝑣𝑛 (43)

where 𝑢𝑛 is the process noise, 𝑣𝑛 is the measurement

noise, the process model is 𝑓𝑛 and measurement model is

ℎ𝑛. 𝑥𝑛+1 is the state vector and its measurement is denoted

by 𝑦𝑛. Here, we wish to estimate the mean and covariances

of both the state and its predicted estimated measurement.

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

77

2.4.1. Unscented Transformation

Suppose we know the mean �̅� and covariance 𝑃 of the

state 𝑥, which could be either predicted or filtered

estimates, we can find a set of points with a sample mean

and covariance equal to �̅� and 𝑃. the points are called

sigma points, which are random in the sense that they

depend on the current estimate of the state and state error

covariance. We then apply our nonlinear function, Eq. (44),

to each of these points. Once these are known, the

calculations are deterministic i.e., no random generators

are involved. The sample mean and covariance is a good

estimate of the true mean and covariance of 𝑦. the biggest

drawback here being the requirement of a matrix square

root that requires 𝒪(𝑛𝑥
3) operations.

𝑦 = ℎ(𝑥) (44)

𝑦𝑖 = ℎ(𝑥𝑖) (45)

�̂�𝑢 =
1

2𝑛𝑥
∑ 𝑦𝑖2𝑛𝑥

𝑖=1 (46)

𝑅�̃�,𝑢 =
1

2𝑛𝑥
∑ (𝑦𝑖 − �̂�𝑢

2𝑛𝑥
𝑖=1)(𝑦𝑖 − �̂�𝑢)𝑇 (47)

where 𝑦𝑖 represents the output of every sigma point, �̂�𝑢 is

the unscented estimated mean obtained from the sample

average and 𝑅�̃�,𝑢 unscented estimated covariance. This

also applies to the states in estimating its mean and

covariance.

2.4.2. Unscented Kalman Filter

Although, there are three steps for the unscented

Kalman filter; the Time update or prediction step, the

sigma update and lastly, the measurement update or filter

step. The sigma update step can be skipped with a bit of

trade off on the accuracy while saving computation i.e.,

only the time update and measurement step are used and

are shown below:

where 𝑛 represents time. We start with what the mean and

covariance initially are at time, 𝑛 = 0:

�̂�0|0 = 𝐸[𝑥𝑜] (48)

𝑃𝑥,0|0 = ||𝑥0 − �̂�0|0||
2

 (49)

Then, for 𝑛 = 1, … the time update step is

performed, then the mean is predicted and covariances of

the state are estimated by running the sigma points into the

process model, 𝑓𝑛 as seen in Eq. (53).

𝑥𝑛−1
𝑖 = �̂�𝑛|𝑛−1 + �̃�𝑖 for i = 1, … , 2nx (50)

�̃�𝑛
𝑖 = [𝑟𝑜𝑤𝑖(√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1)

𝑇
] for i = 1,… , nx (51)

�̃�𝑛
𝑖 = − [𝑟𝑜𝑤𝑖(√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1)

𝑇
] for i = nx + 1,… , 2nx

 (52)

�̂�𝑛
𝑖 = 𝑓𝑛(�̂�𝑛−1

𝑖) (53)

�̂�𝑛|𝑛−1 =
1

2𝑛𝑥
∑ �̂�𝑛

𝑖2𝑛𝑥
𝑖=1 (54)

𝑃𝑥,𝑛|𝑛−1 =
1

2𝑛𝑥
∑ (�̂�𝑛

𝑖 − �̂�𝑛|𝑛−1
2𝑛𝑥
𝑖=1)(�̂�𝑛

𝑖 − �̂�𝑛|𝑛−1)
𝑇 (55)

where a 𝑟𝑜𝑤𝑖(𝐴) denotes the 𝑖 𝑡ℎ row vector of the matrix

𝐴 and √𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1 is a matrix square root of

(𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1) such that

√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1

𝑇
√𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1 = 𝑛𝑥𝑃�̃�,𝑛−1|𝑛−1. 𝑛𝑥 is the

dimension of the state vector, �̂�𝑛|𝑛−1 is the estimate of the

mean and covariance 𝑃�̃�,𝑛−1|𝑛−1 of the state error

covariance at time 𝑛 − 1, lastly, 𝑥𝑛−1
𝑖 , represents the sigma

point. Next, the measurement update is performed. Again,

the predicted estimates are taken and then run through the

measurement model ℎ𝑛 to obtain the measurement sigma

points, 𝑦𝑛
𝑖 . Then the predicted estimated value of the

measurement, �̂�𝑛|𝑛−1 which is the sample average of the

sigma points are calculated. 𝑅𝑛−1 covariance representing

the gaussian noise for each sensors introduced. It is a

diagonal matrix. We also use a covariance 𝑃𝑥�̃� that is a

combination of the state sigma points and the measurement

sigma points to obtain the Kalman gain, 𝐾𝑛. This gain

factor is basically used to decide final value for robot state.

Subsequently we update the predicted state estimates and

covariance.

𝑦𝑛
𝑖 = ℎ𝑛(𝑥𝑛

𝑖) (56)

�̂�𝑛|𝑛−1 =
1

2𝑛𝑥
∑ 𝑦𝑛

𝑖2𝑛𝑥
𝑖=1 (57)

𝑃�̃� =
1

2𝑛𝑥
∑ (𝑦𝑛

𝑖 − �̂�𝑛|𝑛−1
2𝑛𝑥
𝑖=1)(𝑦𝑛

𝑖 − �̂�𝑛|𝑛−1)
𝑇 + 𝑅𝑛−1 (58)

𝑃𝑥�̃� =
1

2𝑛𝑥
∑ (𝑥𝑛

𝑖 − �̂�𝑛|𝑛−1
2𝑛𝑥
𝑖=1)(𝑦𝑛

𝑖 − �̂�𝑛|𝑛−1)
𝑇 (59)

𝐾𝑛 = 𝑃𝑥�̃�𝑃�̃�
−1 (60)

�̂�𝑛|𝑛 = �̂�𝑛|𝑛−1 + 𝐾𝑛(𝑦𝑛 − �̂�𝑛|𝑛−1) (61)

𝑃𝑥,𝑛|𝑛 = 𝑃𝑥,𝑛|𝑛−1 − 𝐾𝑛𝑃�̃�𝐾𝑛
𝑇 (62)

There are however other ways of evaluating sigma

points e.g, upon computation of some scaling parameter, 𝜆

which is a function of 𝑛𝑥. For this, in the place of
1

2𝑛𝑥
 the

corresponding mean and covariance weights 𝑊𝑖 are used.

Every other thing does remain the same; calculate sigma

points, time update, and measurement update wherein the

final state represents the desired vectors. The UKF is

favored as it facilitates implementation of the algorithms as

non-linear transformations of a set of deterministically

chosen sigma points which replaces calculations of

Jacobian matrices [21].

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

78

2.5. Map Making

Basically, the Lidar obtains coordinates of static or

non-dynamic obstructions as polar co-ordinates (𝑟, 𝜃)

representing to what degree away from a specific datum

within itself that it has spun. Hence, points of the Lidar’s

reading that falls below or within the Lidar’s view-finder’s

range are collected and saved as landmarks, as the robot

moves. In addition, every collected point is mapped or

appended to the robot’s location (𝑥𝑖 , 𝑦𝑖) at the time it was

collected. The robot can be controlled to all locations of

interest and an array of landmarks and corresponding robot

locations are generated which are then casted into bytes to

which an occupancy map can be created.

More specifically, the algorithm used is a variant of

the CoreSLAM [2], and is called BreezySLAM [3],

developed to implement a simple SLAM that can be

integrated into a filter-based localization subsystem. This

algorithm however, includes the use of the Random-

Mutation Hill-Climbing search where a position S is

initialized by m randomly selected instances from T. For

each iteration, the algorithm randomly replaces one

instance in S by another randomly selected instance in T –

S. If this replacement can improve the predictive accuracy

of the instances in T, the change will be retained [22]. This

process is repeated for p times, where p is the maximum

search iterations possible. This helps in establishing a

better robot position based on a starting position as

opposed the Monte Carlo localization (MCL). While, for

each obstacle detected, the algorithm does not draw a

single point, but a function with a hole whose lower point

is at the position of the obstacle resulting in a grey-level

map with holes dug to represent obstacle likelihood [2].

Bresenham algorithm is used to draw the view finder’s

rays. Furthermore, the conversion from real-world meters

to pixels is also afforded the user. In this study, total map

size in pixels and its equivalent in meters were chosen as

1000 and 10𝑚 respectively. Lastly, while the map

algorithm is open loop, although not always required, the

image generated may be further processed for a more

perfect representation, in this case, with Opencv.

2.6. A-star

The name is derived from the algorithm being an

optimal form of another common graph-search algorithm

known as ‘𝐴’. Three functions are of interest and are given

as the heuristic; a simple calculation of the distance or

cost-to-go from the current node to the nth node or end

node. It is often denoted by 𝐻(𝑛) and may employ

different methods in obtaining a best estimate of the

measured distance, in this case, Manhattan distance was

selected. The function 𝐺(𝑛); representing the estimate of

the cost-to-come i.e., path cost estimate from start node to

node under consideration or current node. Lastly, 𝐹(𝑛),

which is the sum of the cost-to-go and cost-to-come, Eq.

(63).

𝐹(𝑛) = 𝐺(𝑛) + 𝐻(𝑛) (63)

The 𝐹(𝑛) helps in prioritizing which node to move

next upon looking up the queue in the open-set of available

nodes for the node with the smallest F score. The open-set

is an array of tuples of available nodes to move and their

corresponding F scores, when at any given node of

interest. An item is pulled from the open-set and expanded

only once it has been selected, to which an open-set is

generated again. Nodes can be thought of as grid co-

ordinates or map intersects. In the end the taken path is

made into an array of co-ordinates representing the best

shortest distance from the start point to a goal or target

point. These co-ordinates are what are called waypoints.

The overall low computation time and the guarantee of

producing optimal paths makes for A-star’s selection for

this study. The algorithm is demonstrated using Figure 4

below:

Figure 4. State transition graph

illustrating the operation of the A-star.

Node A has two available nodes connected hence path AB

and AC are considered and the respective 𝐹(𝑛) compared.

Assuming all grid connectors have edge of 1 unit as they

are equally spaced. It follows that:

 AB: cost-to-come, 𝐺(𝑛), 1, representing the unit or

edge of the path between A and B. then cost-to-go,

𝐻(𝑛), the heuristic, an estimate of the distance to the

end or target point, C, also 1. Hence, from Eq. (63),

𝐹(𝑛) = 2.

 AC: cost-to-come, (𝑛), 1, representing the unit or

edge of the path between A and C. then cost-to-go,

𝐻(𝑛), the heuristic, an estimate of the distance to the

end or target point, C, which is itself. Hence, 0.

Therefore, 𝐹(𝑛) = 1.

 The open-set will contain; [(2, 𝐵), (1, 𝐶)]. To which the

candidate with the lowest F score, C, is selected and

popped from the list. Hence, path chosen is A C.

The map under consideration is an extract of the

BreezySLAM generated image and processed using

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

79

Opencv in order to threshold the image. i.e., binarize; make

it an image of just free spaces (white) and walls or

obstructions (black). On this new map, co-ordinates

become pixels to which the start point and goal point may

be specified. The algorithm is run such that it checks a

node or pixel’s neighbor and avoids them if they are below

a specified color threshold, in this case black pixels, then

maps a path around it, i.e., path is strictly traced on the

white spaces.

2.7. Obstacle Avoidance

The A-star algorithm generates waypoints for which

already satisfies the avoidance of walls and other static

obstacles. However, dynamic obstacles are not accounted

and as such requires being addressed; when the Lidar or

ultrasonic sensor detects an obstacle within a certain view

range and angle, while the robot follows this predefined

path, it first checks the distance between its current

position and the next goal or target state in the waypoint,

call it 𝑝2𝑡 and compares it against the distance between its

current position and the obstacle, 𝑝2𝑜. If the distance 𝑝2𝑜

is greater; it implies that the obstacle does not constitute an

hinderance to its current trajectory hence, it is ignored.

However, if 𝑝2𝑡 is greater, a function is called that places a

circle of a specified radius on the obstacle’s location and

draws a line tangential to the circle. The co-ordinate of the

point of tangency is collected and appended to the

waypoint as an intermediate stop for the robot to avoid the

obstacle. The algorithm is demonstrated using Figure 5

below:

Figure 5. Obstacle avoidance illustration.

Let waypoint1 co-ordinate be (𝑥1, 𝑦1) and obstacle co-

ordinate be (𝑥𝑜 , 𝑦𝑜) . Then let a line w1o exist between

these points, to which its center co-ordinate is

(
𝑥1+ 𝑥𝑜

2
 ;

𝑦1+ 𝑦𝑜

2
). Finally, let the distance between the

center co-ordinate of w1o and (𝑥𝑜, 𝑦𝑜) be d.

1. Iterate for 𝑥 from 0 to (ℎ + 𝑟) and 𝑦 from 0 to (𝑘 + 𝑟),

in circle equation, (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2 with

center co-ordinate of w1o as the origin (ℎ, 𝑘) and d as

radius, r. and save all generated circle co-ordinates as

tuples of an array, B.

2. Iterate for 𝑥 from 0 to (ℎ + 𝑟) and 𝑦 from 0 to (𝑘 + 𝑟),

in circle equation, (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2 with

obstacle co-ordinate as the origin (ℎ, 𝑘) and safety

_radius as radius, r. and save all generated circle co-

ordinates as tuples of an array, C.

3. Compare arrays B and C and extract the two common

co-ordinates marking the intersection of both circles,

tuple co-ordinates w1i1 and w1i2.

4. Repeat 1 – 5 for waypoint 2 as w2o and extract arrays

w2i1 and w2i2 intersection points.

5. Using the line equation, 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1), where

(𝑥1, 𝑦1) is w1o and 𝑚 is the gradient obtained between

w1o and intersection w1i1.

6. Similarly, 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1), where (𝑥1, 𝑦1) is w2o

and 𝑚 is the gradient obtained between w2o and

intersection w2i1.

7. Iterate for 𝑥 and 𝑦 in both cases to maximum limit

above the sum of radius of both circles and save in an

array, w1l and w2l. Like in steps 1 and 2.

8. Compare w1l and w2l for a single point of intersection,

i.e., waypoint wpi1.

9. Depending on the desired robot behavior; repeat steps 5,

6, 7 and 8 with the respective second point of

intersection to wpi2. Decide which new waypoint,

wpi1 or wpi2 to append as intermediary between

waypoint1 and waypoint2.

2.8. Experimental Setup

Overall, the setup shown in Figure 6 includes:

 Raspberry pi

 Lidar

 Motor x2

 Incremental Encoder x2

 Ultrasonic sensor

 IMU

 L298n motor driver

Figure 6. The assembled mobile robot.

The experiment was carried out in a room of size 5 by

4.4 m, with wooden demarcations which constituted part of

the stationary obstacle, while the room’s door opens to a

corridor of about 6 by 1.2 m. Maximum and minimum

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

80

motor speed limits are set. The PID constants 𝐾𝑝 = 10,

𝐾𝑖 = 0.01, and 𝐾𝑑 = 0.1, as well as the previous error and

cumulative error for the calculation of the differential and

integral errors respectively, were initialized at 0. The

robot’s dimensions (width, wheel radius etc.) were also

initialized before the algorithm is run on the raspberry.

As the robot move, the encoder’s feedback in

combination with the IMU’s data is served as input values

into motion equations satisfying Eq. (41), to which state

information is predicted. Furthermore, this information is

then fed into the SLAM algorithm that obtains Lidar data

and mapping ensues. Simultaneously, the PID is employed

to correct the difference between the theoretical target state

and the real-world execution. This generates a corrected 𝑤

that helps in updating the robot’s pose before the whole

process is repeated until a satisfactory map is obtained by

the user.

3. Results and Discussion

Two main use cases are foreseen; Firstly, the user

controls the robot around the intended spaces and the

robot, as it moves, localizes, and generates a map as

depicted in Figure 7 (Map 1-6), then saves the last copy of

the generated map when satisfactory. Secondly, the user

specifies any target co-ordinates or points within the map,

declared as start and stop pixel co-ordinates respectively.

The saved image, Figure 7 (Map 7), is then binarized by

the robot, Figure 7 (Map 8), and a path is generated, and

subsequently traced by the robot as seen in Figure 8.

Figure 7. First use case or scenario.

Figure 8. Second use case or scenario.

The measurement factors here would be the robot’s

ability to accomplish a mission or task without interaction

with a human operator (i.e., navigate autonomously), as

well as the closeness between the A-star algorithm

generated path (AGP) in the form of waypoints and the

robot’s real traced path (RTP) with and without sensor

fusion, implying its accuracy. Although, its ability to alter

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

81

said waypoints if only to avoid dynamic obstacles is

implied.

With its real-time progress shown in Figure 8, its

behavior as observed is plotted in Figure 9, and 10.

Essentially, indicating a success in the intention of the

study, to some degree of accuracy, also estimated.

Figure 9. Performance for a straight trajectory (without

sensor fusion).

Figure 10. Performance for a straight trajectory (with

sensor fusion).

In order to estimate the error, the mean deviation

representing the average absolute deviation of points of the

RTP from the AGP is calculated. For this, the mean

Euclidean distance which is the sum of Euclidean distance

at each corresponding point divided by the total number of

the corresponding points, 𝑛, is employed.

�̅� =
∑ (√(𝑥𝑎𝑔𝑝−𝑥𝑟𝑡𝑝)2+(𝑦𝑎𝑔𝑝−𝑦𝑟𝑡𝑝)2)𝑛

𝑖=0

𝑛
 (64)

where (𝑥𝑎𝑔𝑝 , 𝑦𝑎𝑔𝑝) are A-star algorithm’s generated path

co-ordinates and (𝑥𝑟𝑡𝑝, 𝑦𝑟𝑡𝑝) represents the robot’s real

traced path co-ordinates.

The closer the estimates are to zero, the more

accurate the trace is. Using Eq. (64) with four sample

corresponding waypoints for AGP and RTP from Figure 9,

and 10.

Table 1. Average Euclidean Distance Error.

Implementation
Average Euclidean

Distance error (m)

Without sensor fusion 1.5

With sensor fusion 0.45

Table 1 shows the estimated error of the localization

implementation. With the inclusion of sensor fusion

bringing the error closer to zero, offering a comparative

accuracy of about 70%.

The robot’s behaviour is further demonstrated in

Figure 11 for a zig-zag trajectory as the rigidity of the A-

star algorithm does not allow for shapes such as square,

circle etc. to be naturally selected. The algorithm resorts to

finding the optimal path to the goal which may not

necessarily be square, circular etc.

Figure 11. Performance for a zig-zag trajectory (with

sensor fusion).

4. Conclusions

A differential drive robot with natural navigation was

designed. The aim of which was educational, i.e., to ease

intending engineer’s approach on steps and calculations to

be implemented for designing indoor mobile robots. The

basic steps followed have been outlined and are

reproducible. The code is also made available on GitHub,

in python and is integrable in parts or as a whole in other

differential drive robot related projects.

This study uses sensor fusion to limit the drift errors

associated with encoder wheel odometry as it combines its

results with the IMU. This in turn, successfully increased

the accuracy of the localization and helped in map

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

82

creation. The natural navigation also included an ability to

move from one specified point to another within the map

while avoiding obstacle; this was achieved with the use of

A-star search algorithm for the best estimated path and a

tangency approach to avoiding obstacle. The approach

utilized in this paper offers a not-so-simple yet not-so-

complex combination of techniques that are

computationally efficient and fast. However, more

generally, the PID constant’s values and the covariance

matrix values of the sensors could be fine-tuned, with a

further inclusion of the sigma update step in the UKF, for a

more accurate trace. While employing a more flexible path

search algorithm or technique might do even better for the

robot’s behavior.

Furthermore, in the future, the necessary research will

be done to evaluate the best steps to analysis for stresses,

feasible materials, weight considerations as well as

aesthetics, also aimed at easing its integration for intending

engineers designing mobile robots.

Declaration of Ethical Standards

The author(s) of this article declare that the materials

and methods used in this study do not require ethical

committee permission and/or legal-special permission.

Conflict of Interest

The authors declare that they have no known

competing financial interests or personal relationships that

could have appeared to influence the work reported in this

paper.

References

[1] Wei L., Cappelle C.,Ruichek Y., 2013.

Camera/Laser/GPS Fusion Method for Vehicle

Positioning Under Extended NIS-Based Sensor

Validation. IEEE Transactions on Instrumentation

and Measurement, 62(11), pp. 3110-3122.

https://doi.org/10.1109/TIM.2013.2265476.

[2] Bruno S., Oussama H., 2010. CoreSLAM: a SLAM

Algorithm in less than 200 lines of C code. Mines

ParisTech - Center of Robotics, Paris, FRANCE.

[3] Bajracharya S., 2014. BreezySLAM: A Simple,

efficient, cross-platform Python package for

Simultaneous Localization and Mapping. Student

Papers, Record Group 38, Special Collections and

Archives, Leyburn Library, Washington and Lee

University, Lexington, VA.

[4] Tsardoulias E. G., Iliakopoulou A., Kargakos A. et

al., 2016. A Review of Global Path Planning Methods

for Occupancy Grid Maps Regardless of Obstacle

Density. Journal of Intelligent & Robotic Systems,

84(1), p.p. 829–858. https://doi.org/10.1007/s10846-

016-0362-z.

[5] Zou Q., Sun Q., Chen L., Nie B., and Li Q., 2021. A

Comparative Analysis of LiDAR SLAM-Based

Indoor Navigation for Autonomous Vehicles. IEEE

Transactions on Intelligent Transportation Systems.

https://doi.org/10.1109/TITS.2021.3063477.

[6] Guran M., Fico T., Chovancova A., Duchon F.,

Hubinsky P., Dubravsky J., 2014. Localization of

iRobot create using inertial measuring unit, 2014 23rd

International Conference on Robotics in Alpe-Adria-

Danube Region (RAAD), 2014, pp. 1-7, doi:

10.1109/RAAD.2014.7002261.

[7] Suriya D., Srivenkata S., Sundarrajan G., Kiran S.,

Ragul B., Vidhya B., 2016. A Robust Approach for

Improving the Accuracy of IMU based Indoor Mobile

Robot Localization. ICINCO (2) 2016: 436-445.

DOI:10.5220/0005986804360445.

[8] Urrea C., Agramonte R., 2021. Kalman Filter:

Historical Overview and Review of Its Use in

Robotics 60 Years after Its Creation. Journal of

Sensors, 2021. https://doi.org/10.1155/2021/9674015.

[9] Hart P. E.; Nilsson N. J.; Raphael B., 1968. A Formal

Basis for the Heuristic Determination of Minimum

Cost Paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2), pp.100–107.

https://doi.org/10.1109/TSSC.1968.300136.

[10] Purnama H. S., Sutikno T., Alavandar S. and Subrata

A. C., 2019. Intelligent Control Strategies for Tuning

PID of Speed Control of DC Motor - A Review. 2019

IEEE Conference on Energy Conversion (CENCON),

pp.24-30.

https://doi.org/10.1109/CENCON47160.2019.897478

2.

[11] Berntorp K., Årzén K. E., & Robertsson A., 2011.

Sensor Fusion for Motion Estimation of Mobile

Robots with Compensation for Out-of-Sequence

Measurements. 11th International Conference on

Control, Automation and Systems, pp. 211-216.

[12] Janai J., Güney F., Behl A., Geiger A., 2020.

Computer Vision for Autonomous Vehicles:

Problems, Datasets and State of the Art. Foundations

and Trends® in Computer Graphics and Vision,

12(1–3), pp 1-308.

F.Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 5(1): (2022) 73-83

83

[13] Khan M. S., Chowdhury S. S., Niloy N., Aurin F. T.

Z., Ahmed T., 2018. Sonar-based SLAM Using

Occupancy Grid Mapping and Dead Reckoning.

TENCON 2018 - 2018 IEEE Region 10 Conference,

pp. 1707-1712.

doi: 10.1109/TENCON.2018.8650124.

[14] Mu X., He B., Zhang X., Song Y., Shen Y., Feng C.,

2019. End-to-end navigation for Autonomous

Underwater Vehicle with Hybrid Recurrent Neural

Networks. Ocean Engineering, 194. ISSN 0029-8018,

https://doi.org/10.1016/j.oceaneng.2019.106602.

[15] Kang J. G., An S. Y., Kim S. and Oh S., 2009. Sonar

based Simultaneous Localization and Mapping using

a Neuro Evolutionary Optimization. 2009

International Joint Conference on Neural Networks,

pp. 1516-1523,

https://doi.org/10.1109/IJCNN.2009.5178826.

[16] Wang J., Liu J., Kato N., 2019. Networking and

Communications in Autonomous Driving: A Survey.

IEEE Communications Surveys & Tutorials, 21(2),

pp. 1243-1274. doi: 10.1109/COMST.2018.2888904.

[17] Chiu C.C., Hsu J.C., Leu J.S., 2016. Implementation

and analysis of Hybrid Wireless Indoor Positioning

with iBeacon and Wi-Fi. 2016 8th International

Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT), pp. 80-

84. doi: 10.1109/ICUMT.2016.7765336.

[18] Li J. et al., 2018. PSOTrack: A RFID-Based System

for Random Moving Objects Tracking in

Unconstrained Indoor Environment. IEEE Internet of

Things Journal, 5(6), pp. 4632-4641. doi:

10.1109/JIOT.2018.2795893.

[19] Lin P.T., Liao C.A. and Liang S.H., 2021.

Probabilistic Indoor Positioning and Navigation

(PIPN) of Autonomous Ground Vehicle (AGV)

Based on Wireless Measurements. IEEE Access, 9,

pp. 25200-25207.

https://doi.org/10.1109/ACCESS.2021.3057415.

[20] Jensfelt P., 2001. Approaches to Mobile Robot

Localization in Indoor Environments. (Doctoral

thesis, Royal Institute of Technology (KTH),

Stockholm, Sweden). Retrieved from

http://www.diva-

portal.org/smash/get/diva2:8964/FULLTEXT01.pdf

[21] Przemysławm P., Piotr K., 2020. Unscented Kalman

filter application in personal navigation. Proc. SPIE

11442, Radioelectronic Systems Conference 2019,

114421C. DOI:10.1117/12.2564984

[22] Si L., Yu J., Wu W., Ma J., Wu Q., Li S., 2017.

RMHC-MR: Instance selection by random mutation

hill climbing algorithm with MapReduce in big data.

Procedia Computer Science, 111, pp.252-259.

https://doi.org/10.1016/J.PROCS.2017.06.061.

