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Abstract
Detecting shifts in the mean vector of a multivariate statistical process control is crucial,
and equally important is identifying the source of such a signal. This study introduces
a novel approach that combines independent components analysis with support vector
machines to address the challenge of multivariate process monitoring. In this hybrid in-
dependent components analysis-support vector machines method, statistical metrics I2

derived from the independent components extracted through independent components
analysis from observed data serve as input variables for the support vector machines.
The probabilistic outputs generated by the support vector machines model are utilized as
monitoring statistics for the proposed control chart, referred to as I2 − PoC. Simulation
results validate the effectiveness of the independent components analysis with support
vector machines approach in both detecting and identifying shifts in multivariate control
processes, whether they follow a normal or non-normal distribution. Furthermore, the
results demonstrate the robustness of this method in handling various challenges, includ-
ing complex relationships between process variables, shifts of varying sizes, and different
distribution shapes, when compared to existing approaches in the literature.
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1. Introduction
Process monitoring plays an important role in achieving high-quality products in in-

dustrial processes and ensuring reliable process control [6,10]. Detecting the transition of
a process from a stable state to a non-stable state is a crucial challenge in industrial and
service processes. One of the most effective and commonly used tools for this purpose is
statistical control charts. The effectiveness of a control chart is determined by how quickly
it can detect an out-of-control signal. In some cases, multiple correlated quality variables
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need to be monitored within a single process. When this occurs, monitoring the pro-
cess using individual control charts while assuming that quality variables are independent
may not yield accurate results. Therefore, many studies have been conducted to develop
process control tools that consider the joint probability functions of these variables and
condense the monitoring statistics into a single indicator.

One of the most well-known Multivariate Statistical Process Control (MSPC) charts is
Hotelling’s T 2 chart, designed for detecting shifts in a multivariate production process [17].
However, Hotelling’s T 2 chart has limitations in detecting small shifts in the process mean
vector, as it only considers the last sample [31]. To address this issue, two alternative
charts have been developed: the multivariate cumulative sum (MCUSUM) [9] and the
multivariate exponentially weighted moving average (MEWMA) [32] control charts. These
control charts are sensitive to the size of the shift in the process mean vector. Nevertheless,
it is essential for the control chart’s performance not to depend on the shift size. In light
of Hotelling’s T 2 chart’s tendency to miss small to moderate shifts in the mean vector, this
study also includes an evaluation of the performance of MCUSUM and MEWMA control
charts in comparison. Thus, the study demonstrates that the I2−PoC control charts offer
versatility by not being dependent on the shift size, making it valuable tool in various
situations.

When dealing with a process that has correlated data, there’s a risk of receiving false
signals, which can diminish the effectiveness of a control chart. Conversely, detecting
and evaluating the presence of multivariate autocorrelation is a challenging task. Fortu-
nately, the literature offers several studies that address the monitoring of autocorrelated
multivariate processes [2, 4, 49].

The use of traditional multivariate Shewhart charts may not be practical for highdi-
mensional systems with collinearities. It is common to employ projection methods, such
as Principal Component Analysis (PCA) and Partial Least Squares (PLS), to reduce the
dimensionality of the variable space. Several PCA and PLS control charts have been de-
veloped for this purpose [7, 11,21,25]. However, it’s important to note that while PCA is
widely used to reduce the dimensionality of problems for understanding process behavior,
it can yield incorrect results in nonlinear processes due to the assumption of normality
being required [37].

Shewhart-type control charts require that the process follows a normal distribution.
There is relatively little literature on alternative multivariate control charts where nor-
mality assumption is not guaranteed. One such alternative was proposed by [30]. While
the method introduced by [30] has an advantage in simultaneously detecting shifts in
both the mean and variance of the process, it is less efficient at detecting signals when
the process does follow a normal distribution [38]. Chang and Bai [3] proposed a modi-
fied multivariate statistic based on weighted standard deviations specifically designed for
skewed distributions.

In the context of MSPC, it is not only essential to detect shifts in a process but also
imperative to pinpoint the specific variable(s) responsible for these shifts. As the number
of quality variables within a process increases, the investigation into the root cause of
a mean parameter shift can incur significant time and operational costs. Consequently,
research efforts have been dedicated to developing tools for identifying the sources of these
signals. MSPC charts are capable of monitoring multiple variables concurrently. However,
they have limitations when it comes to pinpointing the exact source of a shift. The task
of identifying the source variable or variables behind a shift remains an open and critical
issue that warrants further investigation. The studies by [1] and [16], based on Bonferroni
limits, are examples for this purpose. However, they can be applied when dealing with
only two quality characteristics, and cannot diagnose the identification number of out-of-
control points. Most MSPC charts utilize the quadratic form of the relevant test statistic.
Once a shift in the mean vector of the control chart is detected, a distinct procedure is
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employed to identify the vector component(s) that constitute it. These procedures are
typically grounded in the decomposition techniques outlined in references [15,38–40], and
include stepwise procedures akin to those detailed by [45].

In this context, Independent Components Analysis (ICA) is a method that addresses
the problem of blind source separation by separating the multivariate data derived from
the process into its Independent Components (ICs). ICA calculations are more intricate
compared to PCA and PLS, but they offer an additional benefit thanks to the indepen-
dence between ICs. Latent variables may exist in processes where a dependency exists
between monitored variables. These latent variables represent combinations of indepen-
dent variables that cannot be directly measured. ICA is a method used to extract these
latent variables from the observed variables. Due to this advantageous feature of ICA, it
has found numerous successful applications in the literature [13,23,26,27,29,51].

Lee et al. [29] introduced three process monitoring statistics, I2 and I2
e , and the Square

of Prediction Error (SPE), to detect shifts in the process using ICA. The choice of these
monitoring statistics depends on the rank of the ICs. However, it’s important to note that
there is no standard method for ranking components in ICA. While some methods exist
in the literature to rank components obtained through ICA, these methods rely solely on
mean square error, making them challenging to apply as the number of variables increases.

In addition to this, Lee et al. [27] proposed modifications to the ICA algorithm to
address its limitations, such as the lack of prior knowledge about the number of extracted
components and the absence of a standard ranking method for these components. Yoo et
al. [50] developed a multiway ICA-based monitoring scheme for process monitoring, while
Lu et al. [36] applied ICA to integrate process control in engineering. On a different note,
Hsu et al. [19] devised a process monitoring scheme based on ICA and made adjustments
to handle outlier observations.

Since most traditional MSPC tools rely on the assumption of normality, various process
control tools have been developed based on machine learning algorithms. Machine learning
algorithms, initially designed primarily for classification tasks, have been adapted for
unsupervised one-class classification to distinguish in-control and out-of-control process
data. Among these algorithms, Support Vector Machine (SVM) stands out as a widely
used supervised learning technique capable of efficiently handling high-dimensional data
from non-normal distributions [14]. The SVM approach has found numerous successful
applications, particularly in classification problems, and it doesn’t require assumptions
about the data distribution.

One notable application is the utilization of SVMs in multivariate control charts based
on kernel distance, as proposed by [46]. The study has demonstrated that kernel distance
SVM outperforms traditional monitoring methods, especially when dealing with quality
characteristics that are not multivariate normally distributed.

In their study, Chongfuangprinya et al. [8] employed a combination of the SVM algo-
rithm and the bootstrap method for MSPC. They utilized SVM classification probabilities
as monitoring statistics and derived control limits for this chart, referred to as SVM-PoC,
by estimating percentiles of the PoC statistics through the bootstrap method. Their
research demonstrated that the SVM-PoC chart outperforms other MSPC charts, partic-
ularly in non-normal situations. Furthermore, they developed an Exponential Weighted
Moving Average (EWMA) version of the SVM-PoC chart to enhance its sensitivity to
small process shifts. While their work successfully addressed the challenge of detecting
shifts in the process using SVM classification, it should be noted that they did not present
a solution for identifying the source of the signal.

Model-based MSPC methods were developed by leveraging the physical and mathemat-
ical structures of a process and have found success in process monitoring. However, these
methods may encounter challenges when applied to dynamic and nonlinear processes with
varying conditions. This is primarily due to their reliance on assumptions of normality
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and stationarity. It’s important to note that most of the other methods mentioned ear-
lier are also model-based and share this normality assumption for the joint distribution
of variables. In situations where the joint distribution is non-normal or unknown, the
use of data-driven methods can offer advantages. To enhance the effectiveness of process
monitoring tools, its often beneficial to integrate data-driven techniques with model-based
approaches. This integration should be done while carefully considering the pros and cons
of each approach.

To develop an approach based on SVM when working with high-dimensional data,
first and foremost, it is necessary to employ feature extraction methods. To achieve this
objective, several approaches have been proposed that involve the integration of ICA and
SVM. For instance, Hsu et al. [18] introduced a novel method that combines ICA and
SVM. Performance evaluations have shown that ICA-SVM outperforms PCA-SVM. This
is attributed to ICA’s consideration of higher-order statistics. From this perspective, one
can conclude that ICA plays a crucial role in providing more valuable information for SVM
to detect process shifts. Another study by Shao et al. [43] suggests a hybrid method that
combines ICA and SVM to identify the quality variables responsible for signal variations
in a multivariate process.

The method described in the present study, called as the I2 − PoC control chart, is
based on the integration of ICA and SVM. It distinguishes itself from similar methods like
those presented by [18] and [43], which solely detect signals, by also identifying the source
of the signal. However, both Hsu et al. [18] and Shao et al. [43] have certain limitations.
They do not account for the correlation structure between variables and do not consider
non-normal processes. The I2 − PoC control chart is formed by combining ICA, which
extracts features while preserving dependency structures, and SVM, a classifier that does
not rely on normality assumptions. Consequently, this approach ensures that the process
distribution remains unaffected by the correlation structure between variables, eliminates
the need for assuming normality in the process distribution, and is independent of the shift
size. Therefore, it can be concluded that the proposed method offers greater flexibility
and functionality compared to alternative approaches.

The remainder of this study is structured as follows: Section 2 introduces the theoretical
frameworks of ICA and SVM. In Section 3, we delve into the specifics of the proposed
method. Chapter 4 provides a detailed account of the simulation study conducted to
assess the performance of our proposed approach. Section 5 is dedicated to interpreting the
findings derived from the simulation studies. Lastly, Section 6 hosts discussions concerning
the results.

2. Preliminaries
In this section, the theoretical structure of ICA and SVM methods is explained.

2.1. Independent component analysis
ICA [12,22] is a signal processing technique used to transform observed multivariate data

into components that are statistically independent and expressed as linear combinations
of sources. In other words, ICA is a type of Blind Signal Separation (BSS) method
used to separate data into essential sources of information. ICA was originally developed
to deal with problems similar to the cocktail party problem, but later this method has
been successfully applied in various fields such as image processing, face recognition, and
time series estimation [5, 33–35]. All of the applications can be formulated in a common
mathematical framework for the use of ICA.

In the ICA, it is assumed that p measured variables X = [x(1), x(2), . . . , x(n)] ∈ Rp×n

can be expressed as linear combinations of d(p ≤ d) unknown ICs S = [s(1), s(2), . . . , s(n)] ∈
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Rd×n. The relationship between ICs and measurement variables can be written as in Equa-
tion 2.1

X = AS + E (2.1)
where A = [a1, a2, . . . , ad] ∈ Rp×d is the mixing matrix, E ∈ Rp×d is the residual ma-
trix and n is the sample size. The main problem of ICA is to predict both the original
components matrix S and the mixing matrix A from the observed measurement data ma-
trix X without any knowledge of the S or A matrices. Therefore, the purpose of ICA is
to estimate the separation matrix W ∈ Rd×p. Thus, the (Ŝ) elements of the estimated
sources are as independent of each other as possible. It can be obtained with the formula
in Equation 2.2:

Ŝ = WX (2.2)
where Ŝ = [ŝ(1), ŝ(2), . . . , ŝ(n)] ∈ Rd×n is the estimated source matrix and each ŝi, i =
1, 2, . . . , d vectors are independent from the others.

The ICA modeling is performed in the framework of an optimization problem. This
is achieved by defining a measure for the independence of ICs as the primal objective
function. Various optimization techniques are then applied to solve the seperation matrix
W. Statistically independent ICs have non-Gaussian distributions, and this non-Gaussian
state can be measured by negentropy [20]:

J(y) = H (ygauss )−H(y) (2.3)

where ygauss is a Gaussian random variable with the same variance as y. The differential
entropy H of the random variable y with the probability density function f(y) is obtained
with H(y) = −

∫
f(y) log f(y)dy.Negentropy is nonnegative and measures the degree of

departure from Gaussianity. To predict negentropy effectively, Hyvärinen and Oja [20]
developed a simpler approach as in Equation 2.4:

J(y) ≈ [E{G(y)} − E{G(v)}]2 (2.4)

where the mean and the variance of y are assumed to be zero and one, respectively. v
is the Gaussian variable with zero mean and unit variance, and G is any non-quadratic
function and in this study it is accepted as G1(u) = 1

a1
log cosh (a1u) which was used in

[28] (1 ≤ a1 ≤ 2)
There are various algorithms developed to eliminate computational complexities and

accelerate operations in achieving ICs. In this study, the FastICA algorithm proposed
by [20] was used to estimate the seperation matrix W. There are two preprocessing steps
before the ICA modeling: centering and whitening. Firstly, the input matrix X is cen-
tered by xi ← (xi − E (xi)). The centered input matrix X then passed through the
whitening matrix Q to extract the quadratic statistic of the input matrix. Whitening
transformation A that removes all cross-correlation between random variables is given
by z(k) = Qx(k) = QAs(k) = Bs(k) where Q = Λ1/2UT , Q ∈ Rp×p is the whitening
matrix and it can be calculated with the eigen-decomposition of the covariance matrix
Rx = E

(
x(k)xT (k)

)
= UΛUT . B is an orthogonal matrix and is obtained by the

E
{

z(k)zT (k)
}

= BE
{

s(k)sT (k)
}

BT = BBT = I.
In this paper, the I2 value to be used as an input variable to the SVM model has been

determined as a single value obtained from separation matrix W differently from [29].
Thus, the I2 monitoring statistic for sample k, which is the sum of the squared ICs, is
calculated as in Equation 2.5:

I2(k) = ŝ(k)T ŝ(k) (2.5)
The control limit of the I2 control chart based on ICA were determined by the bootstrap
method used kernel density functions since there is no distribution information of ICs.
If the monitoring statistics in the I2 control chart exceed the control limit, it is decided
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that the process is out of control. This control chart is one-sided since process control is
provided by one control limit.

2.2. Support vector machine
SVM is a powerful machine learning method based on statistical learning theory, origi-

nally proposed by [48]. It is also known as Vapnik-Chervonenkis theory. SVM was initially
designed to optimally separate linearly separable data and was later improved to classify
multidimensional and nonlinearly separated data. It is fundamentally based on the prin-
ciple of determining the hyperplane that can most accurately separate the classes from
each other [47].

The training data set consisting of N observations such as (x1, y1) , . . . , (xN , yN ) can
be represented as D = {(xi, yi) , i = 1, . . . , N}, with x ∈ Rp being any sample in p-
dimensional space (input variable) and yi ∈ {−1, +1} being the class labels to which
output variables belong. In order to linearly separate the training data set D containing
N independent and identically distributed (iid) samples, the equation of the line of the
optimum hyperplane is wx + b = 0. Here w ∈ Rp is the optimal weight vector and b is
the threshold value. The distance between the hyperplanes separating the classes with
maximal margin width 2/∥w∥2, and all the points under the boundary are called support
vector. Therefore, the optimal hyperplane can be found by solving the following quadratic
optimization problem for a linearly separable case [24]:

Min 1
2
∥w∥2

yi(wx + b) ≥ 1, i = 1, . . . , N
(2.6)

This optimization problem can be solved in primal space according to the parameters w
and b. However, solving the dual form of the problem would be a more rational way
as it would give the same result as the primal model and depend only on the Lagrange
multiplier αi. Therefore, the primal model in Equation 2.6 is converted to the following
dual model:

Max L(α) =
N∑

i=1
αi −

1
2

N∑
i=1

N∑
j=1

yiyjαiαj ⟨xi, xj⟩

αi ≥ 0, i = 1, . . . , N

N∑
i=1

αiyi = 0

(2.7)

In most real-life problems, the data may not be linearly separated. In the non-linearly
separable case, SVM transforms the original input space into a high-dimensional feature
space. This facilitates the identification of an optimal linear separation hyperplane using
kernel methods for problems in non-linearly separable input space. There are various
options for the kernel function, the most commonly used kernel function is the RBF
kernel function, which is defined as K (xi, xj) = exp

(
−γ ∥xi − xj∥2

)
where γ is a kernel

parameter [44].
The original SVM was designed for binary classifications. In this study, a new process

monitoring procedure has been developed with the probability of classification (PoC) of
the SVM model. To derive the PoC from the SVM model, Platt [42] used a parametric
sigmoid function model with two parameters A and B. After determining the A and B
parameters, the PoC of a test dataset zi can be obtained from Equation 2.8:

PoCi = 1
1 + exp (Af (zi) + B)

(2.8)
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Details regarding the calculation of the PoC in SVM can be found in Platt’s work [42].
Chongfuangprinya et al. [8] established a threshold value of 0.50 and demonstrated suc-
cessful classification using SVM-PoC values in both normal and non-normal scenarios.

In the present study, we propose PoC control chart inspired by Chongfuangprinya et
al.s research [8]. However, unlike the aforementioned study, we employ misclassification
probabilities as process monitoring statistics to simplify the calculation process. When the
probability distribution of the monitoring statistic is known, control limit for the control
chart can typically be determined based on a specified probability distribution, with a
user specified value (eg. Type 1 error rate). Since the distribution of monitoring statistics
is unknown in the PoC control chart, we determine the control limit using a bootstrap
technique involving kernel density functions. This one-sided control chart focuses on shifts
in one direction, specifically targeting upward shifts in the process.

3. Proposed method
This section introduces a hybrid procedure that combines the feature extraction method

ICA with the classification method SVM. The proposed hybrid approach is motivated by
the idea that the information embedded in the monitoring statistics, used for detecting
shifts in the process, can also be valuable in identifying the source of the variable(s) causing
the shift. The SVM provides valuable information when utilizing the output of higher-
order ICA statistics to detect out-of-control situations in the process. In this context,
we treat the process variables and ICA statistics as an input vector for the SVM. The
PoCs derived from the SVM are subsequently employed in the computation of the process
monitoring statistic

(
I2 − PoC

)
.

The hybrid ICA-SVM method is carried out in two stages. In the first stage, the data
is used for training to create a classification model. In the second stage, the trained model
is put to the test. The initial step involves generating reference information for the hybrid
ICA-SVM approach, which considers two states: the normal operating condition (NOC),
representing when the process is in control, and the fault operating condition (FOC),
representing when the process is out of control [18]. To construct the NOC training
dataset, the first task is to scale the NOC dataset. The scaling involves centralisation and
whitening of the NOC (in-control process) dataset xnormal.

These changes help to make the text flow more smoothly and clarify the order of actions
in the two stages of the method. Next, the FastICA algorithm is executed using the scaled
dataset, assuming that the number of process variables equals the number of ICs. FastICA
produces both the decomposition matrix and the corresponding orthogonal decomposition
matrix.

The relationship between Wnormal and Bnormal is established as

Bnormal =
(
WnormalQ−1

)T
. (3.1)

Therefore, the estimation of reconstructed signals can be calculated using the formula:
ŝnormal = BT

normal znormal . (3.2)
The monitoring statistics under NOC for the sample t is given in Equation 3.3:

I2
normal (t) = ŝT

normal (t)ŝnormal (t) (3.3)
The similar procedure is followed for FOC dataset. The ICs under FOC can be calculated
as follows:

ŝfault = BT zfault (3.4)
where zfault is the scaled FOC dataset. Then, the monitoring statistic for the sample t
under FOC is calculated by Equation 3.5:

I2
fault (t) = ŝT

fault (t)ŝfault (t) (3.5)
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After developing the NOC (xnormal ) and FOC (xfault ) datasets separately, both (xnormal ),
(xfault ), the monitoring statistics I2

normal and I2
fault are combined into xtrain and I2

train ,
respectively.

These combined datasets are then used as input variables in the ICA-SVM algorithm,
along with the label vector. Values in the datasets are labeled with +1 for NOC and -1
for FOC. In the second stage, we test the trained ICA-SVM model using newly generated
test data, which is scaled in the same manner as the training data. The ICs (ŝnew ) are
calculated based on this scaled dataset.

ŝnew = BT znew (3.6)
Subsequently, we calculate the monitoring statistics for each sample as outlined below.

I2
new (t) = ŝT

new (t)ŝnew (t) (3.7)
The observations are separated using the function

f (Xtest) = sgn
(∑

i=1
αiyiK (Xtrain,iXtest) + b∗

)
Xtest ∈

{
+1 if f (Xtest) > 0
−1 if f (Xtest) < 0 (3.8)

where Xtest =
[
xtest, I2

test, ytest
]

represents the input vector for the test stage. If Xtest ∈
+1, then it is interpreted as the process running under NOC, whereas Xtest ∈ −1 refers to
the process under FOC, we obtained control charts using the proposed hybrid ICA-SVM
method. Like all other control charts, the I2 − PoC control chart requires two essential
components: the monitoring statistic and the control limit.

The monitoring statistics represent the SVM’s estimation of the probability that the
observation is out of control. Equation 2.8 is employed to calculate the PoC for the
SVM model. Since the distribution of monitoring statistics is unknown, we utilize a
non-parametric bootstrap method to establish the control limit. This control limit is
determined as the value corresponding to the 99th percentile of the means of I2-PoC
obtained from in-control samples via bootstrapping. If the calculated statistic I2 − PoC
exceeds this control limit, it indicates that the process is considered out of control. In
the event of any detected shift in the process, an investigation is initiated to identify the
sources of this shift.

To detect the shift in the process mean, we use the averages of the SVM output PoC
values for out-of-control conditions POC{−1}. We compare the means for different shift
scenarios and determine the source of the shift based on the largest mean. The flowchart
of the multivariate process monitoring procedure is given in Figure 1.

4. Performance evaluation of I2− PoC control chart: A simulation study
A simulation study was conducted to evaluate the performance of the I2 − PoC con-

trol chart for both multivariate normal and non-normal processes. In both scenarios, we
considered seven different shift magnitudes. These simulations were carried out on pro-
cesses involving three variables. The shifts in the process were achieved by modifying
specific variables that affected the signal, resulting in various possible combinations. To
distinguish between these seven scenarios, we used a numbered notation system. Here,
’0’ indicated that the process was in control (meaning no shifts in the variables), while
’1’ indicated that the process was out of control (indicating variable shifts). For example,
(1, 0, 0) would mean that only the mean of the first variable had shifted, while the second
and third variables remained unchanged.

In this study, for each shift combination, we generated a dataset consisting of 700 in
control observations and 300 out-of-control observations. Each individual sample had a
specific size 1, (n). Consequently, the simulation study required datasets of 7000 ob-
servations for each of training and testing phases, considering the various possible shift
combinations 2p−1 = 7 and p = 3.
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Generate train dataset
Xtrain, I2

train, ytrain

TrainModel = fitcsvm
(
Xtrain, I2

train, ytrain

)

Generate test dataset
Xtest, I2

test, ytest

TrainModel = compact
(
TrainModel, Xtest, I2

test, ytest

)

[labels, PostProbs] = predict
(
TestModel, Xtest, I2

test

)

I2 − POC{+1} = PostProbs (:, 2)

CL = Q0.99
(
sort

(
NOCI2 − POC{+1}

))

I2 − POC ≥ CL
The process is

in control
The process is
out-of-control

STOP max

(
N∑

i=1
I2 − POC{−1}

)Identified source
variable(s) of the shift

NO YES

Figure 1. The flowchart of the hybrid ICA-SVM method

The shifts in the target means of the multivariate normal process were performed as
µ0 + δσ0. We assumed that the variances of the variables were equal and set to 1. Addi-
tionally, we considered three different levels of correlation coefficients between variables:
low (ρ1 = 0.3), medium (ρ2 = 0.5), and high (ρ3 = 0.8).

Data for the marginal distribution of multivariate non-normal processes is generated us-
ing the gamma distribution with the t-Copula method, Xi ∼ Gamma (θ1, θ2) , i = 1, 2, 3.
The parameters θ1 and θ2 represent the shape and scale of the gamma distribution, re-
spectively. The skewness coefficient of the gamma distribution

(
2√
θ1

)
depends on θ1.

Consequently, as θ1 increases, the distribution approaches a normal distribution. Since
the gamma distribution is defined in the range of [0,∞], and for the sake of computa-
tional convenience, we have chosen both θ1 and θ2 to be 0.5 for the in-control process,
(θ1 = 0.5, θ2 = 0.5).
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Data generation for different shift sizes
δ = {0.00, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00}

What is the
distribution of
the process?

Generate 700 in-control
observations for train data set

Xtrain ∼MN (µ0, σ0)

Generate 700 in-control
observations for train data set

Xtrain ∼ Gamma (θ0, θ0)

Generate 300 out-of control
observations for test data set
Xtest ∼MN (µ0 + δσ0, σ0)

Which simulation
senarios in

non-normal case?
Combine train and test data

sets and obtain 1000
observations totally for each

shift size in normal case

Generate 300 out-of control
observations for test data set
Xtest ∼ Gamma1 (θ1 + δ, θ2)

Generate 300 out-of control
observations for test data set
Xtest ∼ Gamma2 (θ1, θ2 + δ)

Generate 300 out-of control
observations for test data set

Xtest ∼ Gamma3 (θ1 + δ, θ2 + δ)

Combine train and
test data sets and obtain
1000 observations totally

for each shift size in
Gamma1 case

Combine train and
test data sets and obtain
1000 observations totally

for each shift size in
Gamma2 case

Combine train and
test data sets and obtain
1000 observations totally

for each shift size in
Gamma3 case

Multivariate
Normal Process

Multivariate
Non-Normal Process

Figure 2. The flowchart of the simulation design

To generate non-normal data, we defined three different simulation scenarios based
on the amount of shifts in the gamma distribution parameters (Gamma_1, Gamma_2,
Gamma_3). In the first scenario, only θ1 is shifted, (θ1 + δ). In the second scenario,
only θ2 is shifted, (θ2 + δ) in the third scenario, both θ1 and θ2 parameters are shifted,
(θ1 + δ, θ2 + δ). The flowchart visualizing the main steps of the simulation procedure is
given in Figure 2. The performance of the proposed method is evaluated using the concept
of average run length (ARL). ARL represents the average number of samples between two
shifts in the process. In a control chart, there are two types of signals: false signals occur
when a sample falls outside the control limit even though the process is in control, while
correct signals occur when the process is genuinely out of control.

As a result, ARL is calculated differently for these two signal types: and (ARL1). For
false signals, it is calculated as (ARL0), and for correct signals (ARL1). In the context of
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hypothesis testing, the probability of receiving a false signal corresponds to Type I error
(α), while the probability of receiving a correct signal corresponds to the power (1 − β).
These probabilities are calculated as the inverses of ARL values: ARL0 = 1/α and for
Type I error and ARL1 = 1/1− β for power.

When a process undergoes a shift, the designed control chart is expected to detect it,
on average, after ARL1 the sample is taken. For a control chart to perform well, it’s
anticipated that the ARL0 is high while the ARL1 is small. Achieving both of these
conditions simultaneously is challenging. To assess the control chart’s performance, the
ARL0 is set to a fixed value, and the corresponding ARL1 value is reported. A smaller
ARL1 at a specific value of ARL0 indicates a better-performing control chart, enabling it
to detect process shifts earlier and manage the process with minimal delay.

The performance of the proposed I2 − PoC control chart for the multivariate normal
process was compared to that of the multivariate Shewhart control charts (Hotelling’s
T 2, MCUSUM, and MEWMA control charts), I2 the control chart, and the PoC control
chart. Since the multivariate Shewhart control charts require the assumption of normality,
the performance of the I2-PoC control chart for the multivariate non-normal process was
evaluated using only the I2 and the PoC control charts.

The performance of Hotelling’s T 2, MCUSUM, and MEWMA control charts in ARL
depends solely on the underlying mean vector and covariance matrix, which are represented
through the non-centrality parameter [32]. Hotelling’s T 2 control chart calculates control
limits using either process sample estimates or known parameters, relying on asymptotic
distributions. Meanwhile, for MCUSUM and MEWMA charts, achieving a fixed value for
ARL0 entails defining the "k-factor" in MCUSUM and MEWMA [41].

In the context of the MCUSUM chart, Crosier [9] suggests selecting k = d/2 to detect
a shift with a magnitude d corresponding to the non-centrality parameter. As for the
MEWMA chart, Lowry and Montgomery [31] illustrate optimal schemes for choosing the
weighting factor λ, which generally falls between 0.05 and 0.25 . In this study, control
limits for MCUSUM and MEWMA control charts were obtained from [41]. Moraes et
al. [41] found that a specific value of λ is preferable for the MEWMA chart because it
outperforms the MCUSUM chart when k = 0.5 corresponds to a target shift detection of
a non-centrality value d = 1.

Once the k and λ values are set, the control limits h are estimated for the control charts
to achieve the same average run length ARL0 = 100. This standardization allows for the
results to be compared with other studies.

To assess the effectiveness of the I2 − PoC control chart in identifying the source of
a shift, we utilized the average probabilities associated with out-of-control observations.
Initially, we computed a reference value using the average probability of receiving false
signals (ARL0) derived from posterior probabilities. Subsequently, we determined the av-
erage probabilities of correctly identifying signals (ARL1) from the posterior probabilities
calculated for various shift scenarios. By identifying the combination for ARL1 in which
differs from ARL0, we can pinpoint the variable(s) responsible for the shift.

All calculations were performed using MATLAB. We conducted 10,000 simulations to
assess the effectiveness of SVM-PoC in detecting shifts in the process. Additionally, we
conducted 2,000 simulations to evaluate the performance for identification the source of
the signal for the proposed control chart.

5. Findings
The findings from the simulation study are presented in the tables. It’s important to

note that the parameter ARL0 was consistently set to 100 and α = 0.01 for all simulations.
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5.1. Findings for the normal case
Table 1 displays the values of ARL1 for the control charts I2 - PoC used in the mul-

tivariate normal process. The ARL1 values were calculated at ρ = 0.3, 0.5, and 0.8 to
demonstrate the impact of correlation between variables on performance. The control
chart I2 - PoC performs exceptionally well for shift sizes of δ = 0.25 or greater. For in-
stance, even when δ = 0.25, the control chart I2− PoC effectively detects process shifts in
the first sample for all correlation values. It is worth noting that the control chart I2 - PoC
performs well for all shift sizes in multivariate normal processes. The degree of correlation
between variables does not significantly affect the performance of this proposed method.
In fact, the control chart I2 − PoC successfully detects process shifts, even when dealing
with highly correlated data.

Table 1. ARL1 values of the I2 −PoC control chart for the multivariate normal
process (ARL0 = 100)

Multivariate Normal Distribution (µ0 + δσ, Σ0)
δσ ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8
0.00 98.97 98.67 98.95
0.25 1.19 1.18 1.13
0.50 1.18 1.16 1.12
0.75 1.16 1.14 1.11
1.00 1.13 1.12 1.09
1.50 1.07 1.07 1.06
2.00 1.03 1.03 1.03
2.50 1.01 1.01 1.01
3.00 1.00 1.00 1.00

Table 2 presents the simulation findings related to identifying the source of shifts in the
process. In this context, we determine the source variable or variables responsible for the
process shift by analyzing various combinations.

The values listed in the "source combination" columns of Table 2 represent the highest
mean values, which serve as indicators for identifying the variable or variables responsible
for the shift. The hybrid ICA-SVM approach accurately identifies the source variable(s)
for all amount of shift in the multivariate normal process. For instance, if we consider
δ = 1.0 and ρ2 = 0.5, the highest value recorded is 6.006, corresponding to the combina-
tion (0, 1, 1) in the respective column. Therefore, the source variables causing the shift
are x2 and x3. Similarly, when we have δ = 2.5 and ρ1 = 0.3, the largest value is 16.698 ,
matching with the combination (1, 0, 1), which signifies that the source variables responsi-
ble for the shift are x1 and x3. You can interpret the other values in the table in a similar
manner.

Table 3 displays the values of various multivariate control charts, including Hotelling’s
T 2 MCUSUM, MEWMA, as well as I2, PoC and I2 − PoC control charts. Among these,
Hotelling’s T 2 control chart exhibits superior performance in detecting large shifts com-
pared to MEWMA and MCUSUM. This is primarily due to the memoryless nature of
Hotelling’s T 2 control chart. Conversely, when it comes to detecting small shifts, the
MEWMA and MCUSUM charts outperform Hotelling’s T 2 chart. Notably, the I2− PoC
control chart delivers the best overall performance. Furthermore, as the correlation level
increases, the performance of the PoC and I2 − PoC control charts remains unaffected
by the degree of correlation. In contrast, there is a decline in the performance of the
multivariate Shewhart control and I2 charts as the correlation level increases.
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Table 2. I2−PoC values for different combinations of sources for the multivariate
normal process ARL0 = 100

Multivariate Normal Distribution (µ0 + δσ, Σ0)

ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8

δσ (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1)

0 0 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999

0.5

(1,1,1) 4.131 4.067 4.062 4.027 4.062 4.021 4.021 4.079 4.054 4.05 4.022 4.036 4.022 4.013 4.048 4.045 4.036 4.022 4.043 4.03 4.024
(1,1,0) 4.063 4.114 4.014 4.032 4.014 4.033 4.004 4.041 4.152 4.007 4.042 4.009 4.033 4.009 4.019 4.521 4.002 4.138 4.002 4.123 4.031
(1,0,1) 4.06 4.014 4.12 4.035 4.015 4.004 4.026 4.048 4.005 4.158 4.045 4.005 4.005 4.052 4.032 4.002 4.537 4.159 4.004 4.032 4.148
(1,0,0) 4.02 4.037 4.053 4.056 4.004 4.002 4.002 4.017 4.052 4.049 4.108 4.009 4.006 4.005 4.006 4.138 4.167 4.424 4.032 4.006 4.007
(0,1,1) 4.068 4.014 4.012 4.006 4.127 4.034 4.034 4.044 4.007 4.005 4.015 4.164 4.039 4.044 4.025 4.005 4.003 4.038 4.522 4.13 4.126
(0,1,0) 4.03 4.049 4.004 4.002 4.039 4.057 4.003 4.021 4.051 4.012 4.003 4.051 4.078 4.004 4.01 4.139 4.03 4.006 4.132 4.432 4.01
(0,0,1) 4.026 4.004 4.041 4.005 4.053 4.004 4.056 4.019 4.01 4.057 4.004 4.037 4.005 4.094 4.017 4.025 4.131 4.006 4.148 4.01 4.44

1

(1,1,1) 5.551 4.663 4.677 4.172 4.654 4.171 4.216 5.179 4.56 4.546 4.156 4.513 4.187 4.175 4.693 4.492 4.43 4.246 4.411 4.258 4.242
(1,1,0) 4.761 5.585 4.134 4.326 4.142 4.414 4.002 4.433 5.918 4.062 4.476 4.047 4.44 4.005 4.218 9.234 4.111 5.244 4.096 5.132 4.035
(1,0,1) 4.757 4.131 5.607 4.376 4.144 4.002 4.385 4.423 4.075 5.992 4.493 4.06 4.006 4.455 4.185 4.101 9.162 5.343 4.108 4.035 5.366
(1,0,0) 4.249 4.407 4.42 4.742 4.006 4.005 4.002 4.168 4.505 4.509 5.197 4.003 4.003 4.003 4.107 5.343 5.361 8.436 4.061 4.05 4.046
(0,1,1) 4.778 4.127 4.138 4.003 5.563 4.354 4.367 4.42 4.059 4.062 4.007 6.006 4.464 4.466 4.219 4.12 4.121 4.043 9.241 5.227 5.231
(0,1,0) 4.242 4.456 4.008 4.004 4.377 4.662 4.003 4.167 4.47 4.002 4.002 4.522 5.163 4.004 4.106 5.259 4.053 4.05 5.249 8.614 4.056
(0,0,1) 4.255 4.003 4.431 4.006 4.419 4.006 4.651 4.172 4.002 4.529 4.005 4.505 4.003 5.116 4.077 4.045 5.374 4.039 5.315 4.044 8.587

1.5

(1,1,1) 9.699 6.551 6.598 4.651 6.563 4.685 4.75 8.479 5.929 5.89 4.687 5.927 4.632 4.611 7.051 5.541 5.603 5.043 5.594 5.063 5.088
(1,1,0) 6.555 9.413 4.645 5.345 4.611 5.279 4.044 5.582 10.193 4.468 5.629 4.466 5.592 4.091 4.675 14.94 6.227 8.127 6.38 8.003 5.553
(1,0,1) 6.59 4.63 9.346 5.341 4.561 4.038 5.287 5.544 4.461 10.171 5.562 4.426 4.09 5.486 4.625 6.142 15.006 7.928 6.17 5.56 8.22
(1,0,0) 5.013 5.645 5.644 7.005 4.132 4.056 4.054 4.661 5.929 5.726 8.329 4.162 4.081 4.087 4.398 8.324 8.597 14.309 5.863 5.379 5.547
(0,1,1) 6.586 4.584 4.616 4.051 9.402 5.259 5.272 5.521 4.417 4.427 4.068 10.383 5.562 5.565 4.704 6.002 6.191 5.478 14.974 8.154 8.302
(0,1,0) 4.958 5.64 4.117 4.052 5.676 6.968 4.052 4.66 5.754 4.17 4.08 5.756 8.284 4.077 4.45 8.36 6.09 5.473 8.63 14.178 5.392
(0,0,1) 4.898 4.124 5.481 4.047 5.496 4.057 6.769 4.648 4.163 5.789 4.07 5.8 4.072 8.315 4.388 6.208 8.486 5.517 8.533 5.481 14.161

2

(1,1,1) 14.204 9.189 9.395 5.564 9.406 5.52 5.581 12.572 8.3 8.327 5.528 8.544 5.72 5.632 10.555 8.645 8.517 7.742 8.538 7.633 7.512
(1,1,0) 9.709 13.79 6.08 6.751 5.885 6.821 4.388 7.71 14.589 6.252 7.355 6.144 7.53 4.804 5.649 18.18 12.336 12.942 12.932 12.647 11.631
(1,0,1) 9.556 6.011 13.641 6.918 6.152 4.374 6.99 7.671 6.363 14.472 7.528 6.459 4.803 7.459 5.56 12.465 18.177 12.869 12.499 11.449 12.889
(1,0,0) 6.43 7.657 7.517 10.312 4.99 4.342 4.327 6.029 8.095 8.34 12.079 5.548 4.749 4.77 5.434 13.817 13.708 17.649 12.357 11.245 11.336
(0,1,1) 9.4 6.122 5.945 4.39 13.618 6.968 6.911 7.714 6.389 6.414 4.836 14.556 7.701 7.639 5.594 12.426 12.474 11.475 18.192 12.407 12.91
(0,1,0) 6.725 7.829 5.019 4.379 7.755 10.474 4.364 6.056 8.307 5.564 4.763 8.319 12.341 4.751 5.656 13.86 12.465 11.545 13.799 17.64 11.561
(0,0,1) 6.645 5.042 7.688 4.369 7.561 4.355 10.176 5.948 5.606 8.238 4.771 8.241 4.665 12.295 5.693 12.568 14.046 11.667 14.011 11.751 17.654

2.5

(1,1,1) 17.014 12.317 12.074 6.831 12.138 6.535 6.992 15.637 11.78 11.956 7.641 11.719 7.459 7.911 13.973 13.077 13.074 11.828 13.014 11.928 11.645
(1,1,0) 12.988 16.708 9.573 8.889 9.549 8.952 5.853 10.503 17.238 10.388 10.143 10.307 10.207 7.594 7.12 19.488 16.91 16.656 16.979 16.594 16.229
(1,0,1) 13.002 9.543 16.698 9.066 9.668 5.917 8.697 10.581 10.395 17.368 10.19 10.495 7.473 10.072 7.249 17.005 19.475 16.922 16.943 16.472 16.639
(1,0,0) 10.049 10.898 10.876 13.634 8.099 5.7 5.538 8.993 11.919 11.936 15.434 10.07 7.526 7.713 8.267 17.669 17.545 19.264 17.083 16.503 16.474
(0,1,1) 13.202 9.44 9.431 5.865 16.762 8.786 8.996 10.377 9.975 10.294 7.378 17.363 10.066 9.848 6.806 17.027 16.879 16.17 19.49 16.576 16.568
(0,1,0) 10.021 10.773 8.302 5.644 10.946 13.676 5.653 9.34 11.851 9.909 7.544 11.961 15.473 7.49 8.236 17.629 16.932 16.254 17.639 19.244 16.286
(0,0,1) 10.145 8.506 11.148 5.766 11.039 5.712 13.587 9.115 9.586 11.962 7.426 11.94 7.573 15.467 8.111 16.837 17.647 16.478 17.616 16.379 19.244

3

(1,1,1) 18.659 14.998 15.31 8.808 15.156 8.417 8.609 17.714 14.525 14.511 9.97 14.515 9.842 9.962 16.421 15.88 15.955 15.288 15.977 15.466 15.291
(1,1,0) 15.97 18.386 13.123 10.629 13.153 11.044 8.504 13.495 18.841 14.134 12.713 14.397 12.662 11.441 9.778 19.89 19.043 18.855 19.206 18.791 18.815
(1,0,1) 15.874 13.253 18.438 11.134 13.324 8.802 11.002 13.168 14.289 18.837 12.408 13.985 11.195 12.526 9.576 19.149 19.879 18.94 19.102 18.914 18.866
(1,0,0) 13.899 14.456 14.351 16.284 12.501 8.77 8.658 13.117 15.459 15.651 17.582 14.276 11.515 11.59 11.171 19.316 19.372 19.793 19.02 18.781 18.716
(0,1,1) 15.971 13.314 13.373 8.951 18.405 11.008 11.034 13.27 14.502 14.319 11.516 18.806 12.72 12.858 9.623 19.154 19.114 18.929 19.885 18.868 18.71
(0,1,0) 13.736 14.118 12.704 8.9 14.379 16.206 8.983 13.147 15.64 14.365 11.997 15.614 17.533 11.715 11.108 19.27 19.027 18.7 19.317 19.801 18.728
(0,0,1) 13.948 12.559 14.303 8.749 14.269 9.049 16.156 12.97 14.269 15.769 11.727 15.738 11.641 17.647 11.138 19.041 19.311 18.799 19.304 18.88 19.782

5.2. Findings for the non-normal case
In Table 4, we present the findings for ARL1 of I2− PoC control charts applied to three

scenarios (Gamma_1, Gamma_2, Gamma_3) involving multivariate gamma processes.
The I2−PoC control chart consistently performs best when subjected to small shift sizes
across all scenarios. Specifically, its performance is most notable when a shift occurs in
both parameters θ1 and θ2. However, as the correlation value increases, the control chart’s
performance comparatively deteriorates, particularly when dealing with small shift sizes.

Table 5 presents I2 − PoC values that have been calculated based on the Gamma_1
scenario. The average value of I2−PoC for scenario Gamma_1 is 2 . The I2−PoC control
chart effectively identifies the source variable(s) responsible for the shift δ = 0.50 for all
correlation levels. For instance, we anticipate that the source variables are x2 and x3.
in the combination (0, 1, 1). Notably, when δ = 1.50 and ρ1 = 0.3 are both present, the
highest value in the (0, 1, 1) column (5.087) corresponds to the same combination in the
row. This alignment between the same combination in both the row and column indicates
the correct identification of the source variable(s). Interestingly, the correlation level does
not influence the determination of the source of the shift. The calculated values for the
Gamma_2 and Gamma_3 scenarios can be found in supplementary materials Table 7 and
Table 8, respectively. The results for scenarios Gamma_2 and Gamma_3 are similar to
those of the Gamma_1 scenario.

Table 6 presents ARL1 values for control charts I2, PoC and I2−PoC at various levels
of δ and ρ for three different scenarios: Gamma_1, Gamma_2, and Gamma_3. For the
Gamma_1 process, the control chart I2 can only detect a process shift when δ = 1.50
or exceeds 1.50. In contrast, both PoC and I2 − PoC control charts can detect shifts for
δ = 0.25. Notably, the PoC control chart outperforms the others when at δ = 0.75 and
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Table 3. ARL1 values of the T 2, MCUSUM, MEWMA, I2, PoC, and I2 − PoC
control charts for the multivariate normal process (ARL0 = 100)

Multivariate Normal Distribution (µ0 + δσ, Σ0)
ρ1 = 0.3

δσ T 2 MCUSUM MEWMA I2 PoC I2−PoC
0 99.46 99.44 99.7 99.92 98.48 98.97

0.25 82.27 42.63 38.68 45.45 5.47 1.19
0.5 52.26 15.13 15.72 35.41 4.22 1.18
0.75 28.86 9.65 9.27 14.08 3.81 1.16

1 16.3 6.65 6.59 9.52 3.28 1.13
1.5 5.69 4.1 4.24 3.5 2.04 1.07
2 2.62 3.09 3.18 1.85 1.26 1.03

2.5 1.57 2.44 2.58 1.28 1.06 1.01
3 1.18 2.15 2.19 1.08 1.01 1

ρ2 = 0.5
δσ T 2 MCUSUM MEWMA I2 PoC I2−PoC
0 100.14 99.46 100.92 98.57 97.85 98.67

0.25 86.25 48.49 44.15 81.17 5.57 1.18
0.5 58.93 20.49 18.44 39.27 5.35 1.16
0.75 34.93 10.32 10.7 21.74 4.43 1.14

1 20.48 7.41 7.54 11.46 3.97 1.12
1.5 7.7 4.43 4.77 4.4 2.41 1.07
2 3.43 3.46 3.54 2.24 1.55 1.03

2.5 1.97 2.86 2.86 1.47 1.15 1.01
3 1.38 2.34 2.41 1.17 1.03 1

ρ3 = 0.8
δσ T 2 MCUSUM MEWMA I2 PoC I2−PoC
0 100.78 100.54 100.87 101.1 97.77 98.95

0.25 89.76 52.43 50.23 84.89 5.88 1.13
0.5 64.05 21.69 21.41 46.42 5.59 1.12
0.75 42.14 12.34 12.8 26.26 4.71 1.11

1 27.05 8.79 8.84 15.1 4.25 1.09
1.5 10.76 5.22 5.46 6 2.91 1.06
2 5.03 3.9 4.04 3 1.79 1.03

2.5 2.74 3.11 3.26 1.85 1.34 1.01
3 1.78 2.81 2.73 1.35 1.1 1

dealing with smaller shifts, regardless of correlation levels. For instance, with δ = 0.75, the
average run length (ARL1) of the I2 control chart is 11.68 , while the ARL1 of the I2−PoC
control chart is 1.50 , and the ARL1 of the PoC control chart is 1.22 . In essence, the PoC
control chart can identify minor shifts in the process shape parameter earlier than the
other methods. However, for larger shifts (δ ≥ 0.75), both the PoC and I2 − PoC control
charts perform similarly and better than the I2 control chart. The performance of the I2

and PoC control charts tends to deteriorate with increasing correlation, but the I2−PoC
control chart remains unaffected by correlation levels. Notably, the I2−PoC control chart
works well across all correlation levels when a shift occurs solely in the shape parameter
for the Gamma_1 scenario. In the case of the Gamma_2 scenario, the I2 control chart
struggles with shifts smaller than 1.5σ, whereas the PoC and I2 − PoC control charts
perform well, even with minor process shifts. The PoC control chart excels at detecting
small shifts earlier than the other methods. However, for larger shifts (δ ≥ 1.5), both
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Table 4. ARL1 values of the I2−PoC control chart for the multivariate gamma
process (ARL0 = 100)

Gamma_1 Gamma_2 Gamma_3
δ ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8

0.00 99.02 99.02 99.14 98.67 99.25 99.73 98.86 99.15 99.58
0.25 3.27 3.32 3.46 2.81 2.87 3.11 1.59 1.66 1.71
0.50 1.75 1.93 1.94 1.93 1.95 2.45 1.23 1.26 1.29
0.75 1.48 1.50 1.52 1.65 1.78 1.81 1.06 1.09 1.11
1.00 1.20 1.21 1.26 1.63 1.65 1.73 1.02 1.03 1.05
1.50 1.08 1.08 1.09 1.38 1.39 1.43 1.00 1.00 1.01
2.00 1.03 1.04 1.05 1.32 1.33 1.35 1.00 1.00 1.00
2.50 1.01 1.01 1.02 1.24 1.27 1.29 1.00 1.00 1.00
3.00 1.00 1.00 1.01 1.19 1.23 1.26 1.00 1.00 1.00

Table 5. I2− PoC values for different combinations of sources for Gamma_1
(ARL0 = 100)

Gamma_1

ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8

(1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1)

0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.5

(1,1,1) 2.468 2.241 2.228 2.057 2.211 2.052 2.066 2.321 2.159 2.18 2.048 2.173 2.047 2.049 2.277 2.158 2.185 2.06 2.173 2.062 2.067
(1,1,0) 2.265 2.305 2.097 2.058 2.1 2.068 2.01 2.212 2.335 2.063 2.061 2.078 2.073 2.005 2.106 2.892 2.028 2.134 2.033 2.151 2.002
(1,0,1) 2.32 2.108 2.323 2.084 2.105 2.008 2.092 2.216 2.065 2.329 2.073 2.063 2.003 2.074 2.098 2.032 2.9 2.153 2.04 2.001 2.17
(1,0,0) 2.146 2.131 2.133 2.145 2.022 2.004 2.009 2.107 2.147 2.139 2.194 2.016 2.004 2.003 2.046 2.179 2.193 2.816 2.005 2.001 2.001
(0,1,1) 2.264 2.095 2.105 2.011 2.346 2.07 2.077 2.207 2.071 2.071 2.005 2.36 2.078 2.069 2.123 2.041 2.036 2.003 2.851 2.187 2.132
(0,1,0) 2.127 2.157 2.032 2.011 2.12 2.142 2.01 2.12 2.143 2.021 2.01 2.115 2.192 2.003 2.048 2.192 2.004 2.001 2.152 2.861 2.002
(0,0,1) 2.148 2.032 2.151 2.009 2.116 2.008 2.127 2.117 2.012 2.137 2.003 2.134 2.004 2.193 2.044 2.003 2.182 2 2.155 2.002 2.856

1

(1,1,1) 3.889 2.914 2.918 2.219 2.914 2.232 2.22 3.396 2.707 2.674 2.219 2.711 2.201 2.195 2.971 2.736 2.729 2.321 2.752 2.342 2.363
(1,1,0) 3.039 3.439 2.409 2.299 2.408 2.334 2.049 2.736 3.507 2.314 2.337 2.302 2.331 2.049 2.543 5.181 2.65 2.7 2.597 2.655 2.279
(1,0,1) 3.09 2.399 3.442 2.322 2.404 2.045 2.305 2.719 2.309 3.599 2.334 2.288 2.037 2.323 2.538 2.601 5.24 2.579 2.593 2.26 2.701
(1,0,0) 2.377 2.365 2.382 2.69 2.109 2.024 2.026 2.304 2.393 2.4 3.001 2.101 2.021 2.019 2.358 2.835 2.911 5.159 2.347 2.156 2.144
(0,1,1) 2.997 2.394 2.392 2.046 3.399 2.351 2.278 2.685 2.272 2.297 2.044 3.624 2.301 2.35 2.598 2.658 2.615 2.281 5.195 2.713 2.645
(0,1,0) 2.379 2.413 2.106 2.024 2.365 2.626 2.023 2.249 2.367 2.077 2.016 2.362 3.019 2.011 2.313 2.767 2.34 2.147 2.785 5.114 2.153
(0,0,1) 2.361 2.099 2.401 2.025 2.403 2.02 2.695 2.262 2.077 2.348 2.015 2.385 2.018 3.038 2.323 2.319 2.853 2.132 2.802 2.164 5.142

1.5

(1,1,1) 5.584 3.766 3.737 2.475 3.81 2.408 2.412 4.734 3.511 3.461 2.419 3.446 2.425 2.386 3.929 3.813 3.841 3.065 3.79 3.067 3.087
(1,1,0) 4.218 4.926 3.007 2.686 3.096 2.655 2.188 3.72 5.093 2.938 2.655 2.927 2.673 2.233 3.517 7.168 4.271 3.702 4.14 3.705 3.343
(1,0,1) 4.222 2.983 4.897 2.655 3.041 2.158 2.613 3.655 2.967 5.132 2.638 3.007 2.2 2.727 3.466 4.067 7.252 3.829 4.182 3.407 3.665
(1,0,0) 2.793 2.792 2.824 3.541 2.307 2.059 2.061 2.603 2.743 2.799 4.19 2.341 2.078 2.085 3.119 4.1 4.201 6.967 3.582 2.964 2.991
(0,1,1) 4.273 2.98 2.961 2.136 5.087 2.69 2.614 3.501 2.904 2.91 2.189 5.309 2.682 2.714 3.522 4.137 4.117 3.364 7.073 3.731 3.781
(0,1,0) 2.825 2.836 2.341 2.066 2.852 3.607 2.069 2.665 2.873 2.344 2.069 2.891 4.175 2.076 3.138 4.134 3.554 2.983 4.088 6.825 2.947
(0,0,1) 2.831 2.361 2.806 2.074 2.81 2.084 3.489 2.672 2.39 2.849 2.083 2.808 2.092 4.152 3.221 3.574 4.265 3.059 4.164 3.001 6.909

2

(1,1,1) 7.009 4.636 4.681 2.734 4.704 2.718 2.673 6.105 4.451 4.495 2.78 4.327 2.805 2.81 5.343 4.989 4.831 3.974 4.81 3.946 3.979
(1,1,0) 5.306 6.304 3.96 2.993 3.995 3.09 2.434 4.816 6.713 3.898 3.175 4.017 3.202 2.616 4.514 8.415 5.755 5.132 5.739 5.038 4.792
(1,0,1) 5.473 4.015 6.461 3.115 3.937 2.364 3.051 4.76 3.965 6.657 3.13 3.928 2.63 3.056 4.557 5.863 8.249 5.273 5.948 4.898 5.235
(1,0,0) 3.605 3.482 3.59 4.657 2.825 2.168 2.21 3.511 3.612 3.611 5.276 3.026 2.303 2.283 4.305 5.684 5.722 8.022 5.236 4.468 4.431
(0,1,1) 5.586 3.918 3.805 2.345 6.434 3.023 3.029 4.882 4.001 4.006 2.642 6.585 3.11 3.175 4.481 5.944 5.815 4.94 8.298 5.127 5.292
(0,1,0) 3.533 3.579 2.929 2.185 3.494 4.592 2.175 3.409 3.646 2.999 2.285 3.612 5.397 2.261 4.271 5.812 5.459 4.659 5.791 8.169 4.651
(0,0,1) 3.523 2.896 3.456 2.208 3.532 2.212 4.503 3.493 3.023 3.663 2.268 3.625 2.281 5.477 4.185 5.279 5.789 4.49 5.796 4.775 8.172

2.5

(1,1,1) 7.986 5.481 5.33 2.866 5.507 2.899 2.963 7.263 4.946 4.921 2.964 5.071 3.026 3.025 6.213 6.154 6.014 5.125 6.022 5.07 5.139
(1,1,0) 6.691 7.542 5.079 3.381 4.994 3.432 2.75 5.835 7.732 5.034 3.74 5.133 3.6 3.194 5.398 9.108 7.076 6.589 7.145 6.532 6.215
(1,0,1) 6.506 4.981 7.594 3.397 5.033 2.744 3.391 5.829 4.985 7.814 3.685 5.093 3.229 3.674 5.322 7.12 8.918 6.677 7.078 6.212 6.393
(1,0,0) 4.55 4.283 4.344 5.507 3.718 2.468 2.453 4.641 4.717 4.719 6.534 3.921 2.77 2.673 5.444 6.954 6.997 8.739 6.761 6.138 6.076
(0,1,1) 6.645 4.889 4.98 2.74 7.598 3.393 3.473 5.876 5.194 5.136 3.167 7.635 3.712 3.747 5.465 7.123 7.076 6.336 8.962 6.473 6.444
(0,1,0) 4.532 4.409 3.738 2.387 4.329 5.7 2.434 4.677 4.665 4.117 2.698 4.575 6.546 2.688 5.417 7.059 6.84 6.269 7.021 8.76 6.173
(0,0,1) 4.69 3.797 4.479 2.419 4.368 2.407 5.663 4.6 4.101 4.717 2.855 4.702 2.732 6.434 5.492 6.822 7.063 6.138 7.081 6.115 8.783

3

(1,1,1) 8.684 6.273 6.232 3.3 6.229 3.19 3.159 7.919 6.133 6.174 3.757 6.173 3.718 3.718 7.125 6.718 6.666 5.898 6.727 5.864 5.904
(1,1,0) 7.408 8.166 6.088 3.912 6.115 4.002 3.397 6.63 8.379 6.017 4.311 6.049 4.266 3.912 6.185 9.375 7.857 7.386 7.929 7.506 7.325
(1,0,1) 7.41 6.041 8.201 3.946 6.09 3.464 3.941 6.715 5.931 8.511 4.248 5.948 3.771 4.093 6.257 7.933 9.249 7.515 7.989 7.424 7.306
(1,0,0) 5.695 5.329 5.356 6.467 4.932 2.921 2.787 5.595 5.571 5.679 7.267 5.306 3.476 3.501 6.239 7.993 7.924 9.259 7.667 7.356 7.301
(0,1,1) 7.49 5.973 6.025 3.222 8.262 3.909 3.94 6.696 6.081 6.211 3.898 8.436 4.309 4.364 6.046 7.903 8.037 7.373 9.384 7.647 7.618
(0,1,0) 5.69 5.45 4.745 2.911 5.298 6.468 2.862 5.491 5.483 5.2 3.543 5.653 7.21 3.451 6.336 7.92 7.612 7.088 7.96 9.179 7.222
(0,0,1) 5.741 4.957 5.472 2.852 5.349 2.859 6.518 5.767 5.299 5.679 3.475 5.659 3.629 7.229 6.249 7.681 7.956 7.311 7.884 7.241 9.182

the PoC and I2− PoC control charts outperform the I2 control chart. As correlation
levels increase, the performance of all three methods deteriorates. Unlike the situation
in the Gamma_1 scenario, where the I2 − PoC control chart remained unaffected by
correlation levels when a shift occurred in the shape parameter, it is negatively impacted
in the Gamma_2 scenario when a shift occurs in the scale parameter. Remarkably, the
performance of the PoC control chart is superior in the Gamma_2 scenario compared to
the Gamma_1 scenario.

The PoC and I2 − PoC control charts outperform the speed of the traditional control
chart in detecting process shifts, even at very small sample sizes, across all correlation
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levels in the scenario Gamma_3. For instance, with low values ρ1 = 0.3 and δ = 0.25, the
traditional control chart detects the shift after approximately nine samples, whereas the
PoC and I2−PoC charts can identify it after just one sample. When a shift occurs in both
parameters, the performance of I2, PoC and I2 − PoC control charts remains consistent,
unaffected by the correlation levels at δ ≥ 1.5. In the case of the multivariate gamma
distribution, all methods demonstrate superior performance when a shift occurs in both
the shape and scale parameters, compared to situations where the shift occurs in only one
of these parameters.

Table 6. ARL1 values of the I2, PoC, and I2−PoC control charts for Gamma_1,
Gamma_2 and Gamma_3 senarios (ARL0 = 100).

Gamma_1

ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8

I2 PoC I2 − PoC I2 PoC I2 − PoC I2 PoC I2 − PoC
0 100.67 99.97 99.02 100.4 99.83 99.02 100.4 98.76 99.14

0.25 37.74 1.88 3.32 44.9 2.44 3.46 49.95 5.78 3.27
0.5 18.42 1.36 1.93 24.97 1.46 1.93 25.26 1.68 1.75
0.75 11.68 1.22 1.5 14.6 1.26 1.52 15.95 1.57 1.48

1 7.12 1.1 1.2 9.91 1.12 1.21 10.23 1.25 1.26
1.5 3.52 1.03 1.08 4.72 1.05 1.08 5.21 1.11 1.09
2 2.25 1.01 1.05 2.93 1.03 1.03 3.3 1.1 1.05

2.5 1.64 1 1.01 1.94 1.01 1.01 2.39 1.02 1.02
3 1.34 1 1 1.53 1 1 1.81 1.01 1.01

Gamma_2
0 101.03 97.56 98.67 100.11 98.77 99.25 100.47 98.77 99.73

0.25 23.03 1.5 2.87 24.07 1.99 2.81 24.96 2.02 3.11
0.5 9.41 1.48 1.93 10.64 1.49 1.95 11.6 1.6 2.45
0.75 6.25 1.42 1.65 7.08 1.45 1.78 8.15 1.54 1.81

1 4.4 1.38 1.63 4.97 1.45 1.65 5.89 1.5 1.73
1.5 2.96 1.32 1.38 3.36 1.33 1.39 4.13 1.35 1.43
2 2.36 1.23 1.32 2.7 1.25 1.33 3.24 1.28 1.35

2.5 2.04 1.15 1.24 2.3 1.17 1.27 2.79 1.24 1.29
3 1.84 1.12 1.19 2.08 1.16 1.23 2.49 1.22 1.26

Gamma_3
0 100.76 99.07 98.86 101.9 100.13 99.15 99.49 98.96 99.58

0.25 9.29 1.33 1.59 11.41 1.37 1.66 14.18 1.53 1.71
0.5 3.17 1.11 1.23 3.7 1.13 1.26 4.53 1.18 1.29
0.75 1.74 1.02 1.06 1.97 1.02 1.09 2.47 1.05 1.11

1 1.27 1.01 1.02 1.41 1.01 1.03 1.66 1.03 1.05
1.5 1.04 1 1 1.08 1 1 1.18 1 1.01
2 1 1 1 1.01 1 1 1.04 1 1

2.5 1 1 1 1 1 1 1.01 1 1
3 1 1 1 1 1 1 1 1 1

6. Conclusion
In order to enhance efficiency and maintain quality within a multivariate process, it is

crucial to provide operators with precise information regarding the process’s status. How-
ever, the practical implementation of MSPC charts presents a challenge. This challenge
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revolves around the identification of the quality variable(s) responsible for triggering the
out-of-control signal.

The objective of this study is to develop a hybrid method capable of not only detecting
shifts but also pinpointing the variable(s) responsible for these shifts in both multivariate
normal and non-normal processes with correlated data. To achieve this, we considered two
distinct processes, one adhering to a normal distribution and the other to a non-normal
distribution. Additionally, we examined the correlation levels among the quality variables
within the process, categorizing them into three levels: low, medium, and high.

In the context of a multivariate normal process scenario, the performance of the control
chart in detecting a shift in the process mean is superior to that of Hotelling’s T 2 chart,
MCUSUM, MEWMA, I2 and PoC control charts. Generally, MCUSUM and MEWMA
control charts exhibit similar performance and outperform Hotelling’s T 2 chart, particu-
larly when the shift in mean is small. The proposed control chart surpasses Shewhart con-
trol charts for shift sizes exceeding 1.5, while the PoC control chart outperforms Shewhart
control charts even for smaller shifts. In both small and large shift sizes, the proposed
I2−PoC control chart demonstrates superiority over Shewhart, I2, and PoC control charts.
Furthermore, as the correlation level between variables increases, the performance of all
other methods tends to diminish proportionally, while the I2−PoC control chart remains
unaffected. These findings highlight the fact that the I2−PoC control chart is insensitive
to both shift size and correlation level in multivariate normal processes, underlining its
superior performance in such scenarios.

For non-normal processes, both the PoC and I2 − PoC control charts outperform the
standard control chart, even when confronted with small shifts in each scenario. As corre-
lation levels increase, the relative performance of the | I2 control chart decreases, whereas
the performance of the PoC and the I2−PoC control charts remains unaffected. The PoC
and I2 − PoC control chart are insensitivity to shift size and correlation level, coupled
with its strong performance in non-normal processes, represents a significant advantage
over the alternatives discussed in the literature.

The hybrid ICA-SVM method offers a solution for detecting shifts in processes that con-
form to both multivariate normal and non-normal distributions, and it effectively identifies
the source variable(s) responsible for these shifts. In various scenarios, including different
shift sizes and correlation levels within multivariate normal and non-normal processes, the
hybrid ICA-SVM method consistently and accurately determines the source of the shift.
Our simulation study demonstrates that the performance of this method remains stable,
regardless of the degree of correlation among variables when identifying the source of the
shift. Consequently, the hybrid ICA-SVM method presents a flexible alternative for mon-
itoring multivariate processes, alleviating the need for the normality assumption found in
traditional MSPC charts and remaining unaffected by correlated variables.

The present study plays a crucial role in the field of MSPC by addressing the detection
and identification of shifts in both multivariate normal and non-normal processes. Our
proposed method stands out as superior compared to similar studies in the literature.
In a prior study by Lee et al. [29], they offered a solution for detecting and identifying
shifts, but it comes with a computational challenge. As the number of quality variables
increases, applying their method becomes increasingly difficult. Similarly, in studies like
Chongfuangprinya et al. [8] and Shao et al. [43], the results of their approaches to
identifying shifts remain unclear and involve computational complexities.

Our proposed method remains open to further development. For instance, in a multi-
variate process, an out-of-control situation may manifest in the process distribution itself
as well as in the distribution parameters. The proposed method can also be extended to
detect shifts occurring simultaneously in both the mean vector and the variance-covariance
matrix.
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Appendix A. Supplementary Materials

Table 7. I2− PoC values for different combinations of sources for Gamma_
2 (ARL0 = 100)

Gamma_2 (θ1; θ2 + δ)

ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8

δ (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1)

0 0 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999 3.999

0.5

(1,1,1) 4.387 4.192 4.156 4.057 4.182 4.062 4.066 4.269 4.155 4.153 4.046 4.157 4.044 4.062 4.235 4.157 4.146 4.053 4.171 4.058 4.063
(1,1,0) 4.262 4.195 4.149 4.06 4.138 4.055 4.031 4.219 4.18 4.109 4.06 4.125 4.06 4.016 4.192 4.201 4.083 4.08 4.096 4.084 4.016
(1,0,1) 4.249 4.127 4.2 4.061 4.123 4.027 4.062 4.23 4.113 4.188 4.057 4.118 4.016 4.064 4.183 4.081 4.209 4.082 4.094 4.015 4.079
(1,0,0) 4.179 4.114 4.118 4.062 4.077 4.025 4.028 4.15 4.105 4.106 4.077 4.063 4.022 4.021 4.139 4.126 4.138 4.131 4.044 4.013 4.024
(0,1,1) 4.29 4.143 4.154 4.032 4.195 4.072 4.046 4.216 4.099 4.113 4.028 4.188 4.058 4.059 4.184 4.095 4.113 4.014 4.221 4.086 4.091
(0,1,0) 4.19 4.105 4.081 4.019 4.105 4.074 4.022 4.167 4.136 4.059 4.021 4.125 4.098 4.016 4.141 4.139 4.037 4.01 4.13 4.152 4.013
(0,0,1) 4.171 4.071 4.121 4.017 4.1 4.03 4.068 4.162 4.06 4.11 4.021 4.114 4.016 4.07 4.139 4.04 4.139 4.011 4.145 4.016 4.158

1

(1,1,1) 5.25 4.624 4.631 4.242 4.72 4.243 4.26 4.995 4.602 4.605 4.247 4.624 4.236 4.247 4.749 4.581 4.615 4.292 4.577 4.289 4.28
(1,1,0) 4.853 4.773 4.495 4.259 4.46 4.24 4.122 4.807 4.659 4.425 4.256 4.442 4.243 4.091 4.685 4.902 4.441 4.426 4.425 4.44 4.13
(1,0,1) 4.894 4.486 4.743 4.247 4.478 4.126 4.214 4.743 4.411 4.624 4.236 4.388 4.1 4.254 4.586 4.386 4.782 4.369 4.367 4.095 4.357
(1,0,0) 4.553 4.377 4.371 4.276 4.248 4.084 4.071 4.417 4.379 4.36 4.3 4.174 4.061 4.064 4.374 4.475 4.51 4.707 4.16 4.059 4.05
(0,1,1) 4.988 4.544 4.528 4.124 4.804 4.281 4.261 4.737 4.44 4.393 4.109 4.642 4.226 4.277 4.652 4.399 4.425 4.091 4.833 4.438 4.406
(0,1,0) 4.509 4.354 4.231 4.086 4.354 4.282 4.081 4.39 4.309 4.175 4.063 4.347 4.253 4.076 4.392 4.52 4.139 4.063 4.454 4.689 4.058
(0,0,1) 4.496 4.217 4.324 4.07 4.342 4.081 4.271 4.484 4.189 4.408 4.065 4.36 4.074 4.317 4.371 4.137 4.462 4.056 4.463 4.058 4.675

1.5

(1,1,1) 6.384 5.194 5.297 4.458 5.166 4.517 4.524 5.863 5.22 5.198 4.514 5.214 4.494 4.506 5.314 5.15 5.094 4.619 5.124 4.627 4.636
(1,1,0) 5.733 5.487 5.019 4.518 4.959 4.501 4.281 5.364 5.263 4.79 4.521 4.852 4.529 4.23 5.262 5.674 4.879 4.925 4.913 4.877 4.295
(1,0,1) 5.683 5.037 5.485 4.509 4.937 4.309 4.513 5.375 4.85 5.241 4.565 4.881 4.238 4.533 5.202 4.906 5.558 4.879 4.885 4.316 4.86
(1,0,0) 4.854 4.696 4.679 4.581 4.382 4.161 4.155 4.793 4.756 4.694 4.583 4.374 4.148 4.14 4.708 4.835 4.895 5.36 4.357 4.174 4.151
(0,1,1) 5.647 4.968 4.977 4.285 5.527 4.509 4.467 5.45 4.894 4.845 4.248 5.236 4.534 4.551 5.291 4.963 4.874 4.368 5.738 4.964 4.935
(0,1,0) 4.884 4.71 4.436 4.147 4.712 4.585 4.156 4.756 4.634 4.359 4.132 4.634 4.563 4.144 4.765 4.954 4.366 4.165 4.949 5.403 4.182
(0,0,1) 4.931 4.447 4.701 4.16 4.725 4.153 4.556 4.76 4.369 4.608 4.135 4.642 4.13 4.571 4.694 4.338 4.851 4.159 4.844 4.17 5.302

2

(1,1,1) 7.217 5.862 5.905 4.831 5.892 4.777 4.73 6.534 5.778 5.74 4.825 5.78 4.885 4.88 6.064 5.535 5.516 4.887 5.597 4.902 4.934
(1,1,0) 6.503 6.239 5.591 4.821 5.563 4.859 4.499 6.015 5.911 5.297 4.838 5.365 4.818 4.422 5.836 6.357 5.437 5.407 5.45 5.443 4.609
(1,0,1) 6.53 5.609 6.183 4.856 5.604 4.521 4.834 6.025 5.301 5.852 4.822 5.308 4.415 4.811 5.71 5.696 6.828 5.614 5.679 4.75 5.568
(1,0,0) 5.418 5.128 5.106 4.958 4.777 4.247 4.266 5.263 5.027 5.023 4.961 4.569 4.256 4.222 5.17 5.415 5.315 6.115 4.786 4.384 4.392
(0,1,1) 6.468 5.608 5.594 4.482 6.227 4.838 4.854 5.971 5.371 5.354 4.446 5.926 4.83 4.862 5.9 5.584 5.504 4.707 6.559 5.453 5.419
(0,1,0) 5.41 5.089 4.729 4.275 5.092 4.901 4.253 5.235 5.049 4.63 4.253 5.056 4.96 4.255 5.203 5.496 4.733 4.393 5.496 6.098 4.378
(0,0,1) 5.36 4.676 5.033 4.246 4.999 4.258 4.963 5.198 4.639 5.044 4.266 5.012 4.235 4.946 5.188 4.75 5.433 4.37 5.425 4.357 6.061

2.5

(1,1,1) 8.225 6.572 6.48 5.036 6.659 5.101 5.036 7.194 6.287 6.303 5.12 6.363 5.154 5.136 6.754 6.139 6.077 5.365 6.156 5.365 5.269
(1,1,0) 7.29 6.94 6.191 5.177 6.23 5.169 4.774 6.641 6.406 5.853 5.123 5.858 5.198 4.663 6.317 7.579 6.251 6.18 6.306 6.115 5.195
(1,0,1) 7.394 6.187 6.89 5.149 6.15 4.755 5.169 6.847 5.976 6.451 5.228 6.021 4.741 5.232 6.583 6.151 7.255 5.989 6.125 5.062 6.007
(1,0,0) 5.744 5.37 5.332 5.257 5.039 4.37 4.377 5.623 5.384 5.461 5.333 4.859 4.348 4.356 5.528 5.755 5.828 6.689 5.054 4.523 4.512
(0,1,1) 7.379 6.27 6.259 4.815 6.839 5.208 5.201 6.842 5.937 6.032 4.759 6.512 5.078 5.25 6.563 6.11 6.052 5.063 7.305 5.929 5.948
(0,1,0) 5.869 5.439 5.058 4.392 5.466 5.256 4.405 5.498 5.3 4.874 4.329 5.242 5.257 4.324 5.741 5.901 5.19 4.632 5.902 6.792 4.62
(0,0,1) 5.857 4.983 5.457 4.399 5.443 4.384 5.211 5.543 4.922 5.386 4.353 5.333 4.373 5.269 5.767 5.205 5.943 4.637 5.887 4.65 6.894

3

(1,1,1) 8.868 7.145 7.132 5.355 7.067 5.383 5.358 7.611 6.766 6.792 5.317 6.776 5.415 5.382 7.499 6.64 6.73 5.749 6.658 5.743 5.72
(1,1,0) 7.981 7.5 6.727 5.517 6.81 5.566 5.108 7.416 6.892 6.406 5.485 6.498 5.603 5.016 7.045 7.902 6.671 6.5 6.771 6.55 5.516
(1,0,1) 8.026 6.832 7.553 5.57 6.731 5.084 5.432 7.241 6.347 6.903 5.457 6.357 4.943 5.567 6.923 6.459 7.677 6.361 6.533 5.335 6.291
(1,0,0) 6.242 5.764 5.841 5.639 5.366 4.549 4.522 6.017 5.712 5.751 5.535 5.226 4.531 4.507 6.219 6.476 6.499 7.395 5.665 4.899 4.969
(0,1,1) 8.073 6.805 6.833 5.073 7.448 5.537 5.479 7.44 6.46 6.473 4.978 7.055 5.55 5.58 6.839 7 7.033 5.795 8.485 6.967 6.839
(0,1,0) 6.16 5.767 5.339 4.545 5.766 5.593 4.543 5.999 5.72 5.128 4.492 5.731 5.635 4.511 6.447 6.797 5.832 5.111 6.608 7.635 5.072
(0,0,1) 6.204 5.353 5.748 4.534 5.798 4.54 5.636 5.987 5.241 5.664 4.465 5.642 4.496 5.57 6.008 5.445 6.277 4.805 6.224 4.776 7.172
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Table 8. I2− PoC values for different combinations of sources for Gamma_
3 (ARL0 = 100)

Gamma_3 (θ1 + δ; θ2 + δ)

δσ ρ1 = 0.3 ρ2 = 0.5 ρ3 = 0.8
(1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1)

0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.5

(1,1,1) 4.008 3.362 3.285 2.467 3.311 2.482 2.479 3.603 3.13 3.122 2.463 3.077 2.438 2.455 3.117 3.037 3.02 2.615 3.065 2.563 2.59
(1,1,0) 3.55 3.402 2.915 2.465 2.92 2.501 2.241 3.195 3.298 2.772 2.507 2.781 2.511 2.224 3.057 4.39 2.943 2.98 2.941 2.917 2.51
(1,0,1) 3.505 2.871 3.366 2.476 2.956 2.263 2.484 3.114 2.67 3.279 2.479 2.698 2.232 2.408 2.995 2.966 4.352 2.92 2.923 2.511 2.935
(1,0,0) 2.755 2.606 2.66 2.623 2.382 2.113 2.116 2.563 2.59 2.603 2.812 2.278 2.098 2.095 2.61 2.984 3.002 4.552 2.494 2.27 2.254
(0,1,1) 3.483 2.934 2.951 2.269 3.393 2.51 2.493 3.22 2.743 2.747 2.25 3.319 2.459 2.458 2.913 2.899 2.904 2.478 4.193 2.924 2.843
(0,1,0) 2.803 2.691 2.409 2.124 2.684 2.58 2.14 2.606 2.596 2.302 2.092 2.597 2.914 2.096 2.639 2.95 2.491 2.254 2.86 4.457 2.252
(0,0,1) 2.81 2.391 2.722 2.124 2.692 2.124 2.624 2.555 2.274 2.546 2.104 2.552 2.1 2.792 2.611 2.578 2.983 2.253 2.945 2.258 4.484

1

(1,1,1) 7.721 6.681 6.657 4.537 6.678 4.623 4.549 6.901 6.26 6.28 4.669 6.266 4.664 4.666 6.133 6.259 6.361 5.655 6.462 5.751 5.717
(1,1,0) 7.109 6.805 6.199 4.649 6.215 4.652 4.22 6.488 6.56 5.951 4.715 5.903 4.792 4.413 6.044 7.463 6.527 6 6.451 5.991 5.83
(1,0,1) 7.041 6.197 6.778 4.671 6.259 4.204 4.597 6.458 5.913 6.629 4.789 5.893 4.384 4.811 5.968 6.412 7.328 5.907 6.411 5.712 6.11
(1,0,0) 5.391 4.99 4.956 4.91 4.838 3.446 3.471 5.408 5.119 5.119 5.586 4.919 3.705 3.774 5.677 6.247 6.275 7.646 6.21 5.541 5.505
(0,1,1) 7.234 6.224 6.213 4.229 6.943 4.664 4.669 6.559 6.036 6.033 4.461 6.784 4.85 4.875 5.972 6.382 6.38 5.87 7.3 5.855 5.899
(0,1,0) 5.447 5.097 4.912 3.525 5.066 4.997 3.506 5.184 5.053 4.819 3.702 5.112 5.513 3.653 5.755 6.213 6.227 5.56 6.214 7.601 5.669
(0,0,1) 5.453 4.973 5.11 3.525 5.187 3.544 5.044 5.275 4.806 5.023 3.702 5.071 3.63 5.545 5.82 6.237 6.395 5.665 6.281 5.547 7.757

1.5

(1,1,1) 9.359 8.674 8.674 6.486 8.556 6.673 6.462 8.812 8.356 8.402 6.924 8.387 7.049 6.948 8.127 8.396 8.389 8.054 8.472 8.073 8.022
(1,1,0) 9.08 8.961 8.51 6.958 8.506 6.974 6.536 8.755 8.882 8.484 7.394 8.389 7.331 7.034 8.049 8.951 8.434 8.342 8.537 8.35 8.172
(1,0,1) 8.987 8.372 8.898 6.983 8.469 6.465 6.953 8.473 8.136 8.518 7.133 8.258 7.054 7.098 8.047 8.485 8.925 8.198 8.41 8.161 8.244
(1,0,0) 7.691 7.484 7.548 7.316 7.476 6.065 6.168 7.67 7.549 7.578 7.637 7.432 6.482 6.405 7.726 8.058 8.084 8.786 8 7.711 7.838
(0,1,1) 9.016 8.528 8.492 6.674 8.9 6.938 6.999 8.711 8.314 8.287 6.896 8.977 7.403 7.347 8.124 8.456 8.523 8.236 8.943 8.256 8.266
(0,1,0) 7.77 7.522 7.399 6.079 7.528 7.295 6.134 7.497 7.469 7.427 6.295 7.457 7.643 6.287 7.729 8.064 8.02 7.738 8.09 8.775 7.708
(0,0,1) 7.658 7.405 7.401 5.964 7.461 6.132 7.274 7.649 7.444 7.615 6.475 7.476 6.444 7.699 7.53 7.934 7.906 7.52 7.889 7.576 8.684

2

(1,1,1) 9.788 9.438 9.476 8.016 9.463 7.963 8.115 9.623 9.307 9.321 8.26 9.285 8.222 8.16 9.309 9.213 9.186 8.81 9.2 8.783 8.863
(1,1,0) 9.724 9.722 9.31 8.46 9.356 8.4 7.818 9.401 9.581 9.189 8.654 9.106 8.71 8.304 8.961 9.559 9.156 9.272 9.224 9.274 9.041
(1,0,1) 9.718 9.41 9.658 8.322 9.38 8.057 8.467 9.516 9.276 9.571 8.737 9.273 8.571 8.706 9.133 9.313 9.52 9.225 9.351 9.185 9.204
(1,0,0) 8.978 8.901 8.905 8.658 8.831 7.919 7.97 9.222 9.11 9.14 9.124 9.077 8.422 8.346 8.712 8.978 8.96 9.265 8.955 8.778 8.747
(0,1,1) 9.728 9.351 9.35 7.963 9.719 8.337 8.337 9.534 9.316 9.319 8.482 9.669 8.646 8.838 9.199 9.457 9.433 9.272 9.66 9.36 9.421
(0,1,0) 9.16 8.964 8.953 8.024 9.017 8.723 8.021 9.149 9.125 9.046 8.359 9.157 9.155 8.398 9.131 9.341 9.348 9.153 9.335 9.59 9.191
(0,0,1) 9.307 9.132 9.16 8.117 9.209 8.075 8.919 8.836 8.758 8.73 8.095 8.731 8.142 8.745 8.79 9.056 9.043 8.841 9.057 8.805 9.322

2.5

(1,1,1) 9.952 9.802 9.831 8.799 9.826 8.801 8.847 9.875 9.723 9.734 8.864 9.712 8.86 8.88 9.704 9.583 9.586 9.129 9.587 9.161 9.193
(1,1,0) 9.945 9.88 9.816 9.233 9.81 9.209 8.593 9.838 9.868 9.677 9.386 9.673 9.437 8.735 9.572 9.91 9.492 9.695 9.504 9.696 8.742
(1,0,1) 9.934 9.791 9.896 9.246 9.782 8.675 9.14 9.842 9.701 9.87 9.4 9.706 9.063 9.348 9.65 9.564 9.871 9.693 9.618 9.19 9.717
(1,0,0) 9.742 9.719 9.661 9.513 9.678 9.123 9.109 9.806 9.736 9.745 9.765 9.705 9.308 9.23 9.588 9.649 9.659 9.74 9.642 9.538 9.588
(0,1,1) 9.93 9.8 9.791 8.656 9.889 9.164 9.236 9.861 9.663 9.695 8.8 9.836 9.295 9.296 9.508 9.397 9.392 8.783 9.789 9.577 9.592
(0,1,0) 9.719 9.697 9.67 9.052 9.63 9.492 9.08 9.585 9.541 9.5 9.209 9.528 9.493 9.177 9.643 9.754 9.74 9.682 9.745 9.845 9.673
(0,0,1) 9.74 9.669 9.683 9.102 9.695 9.111 9.525 9.785 9.701 9.689 9.228 9.706 9.287 9.703 9.685 9.731 9.768 9.7 9.799 9.723 9.857

3

(1,1,1) 9.988 9.902 9.943 9.459 9.957 9.424 9.452 9.967 9.906 9.932 9.444 9.916 9.396 9.447 9.893 9.806 9.825 9.537 9.828 9.496 9.462
(1,1,0) 9.985 9.952 9.939 9.575 9.939 9.64 9.416 9.963 9.949 9.925 9.643 9.9 9.624 9.399 9.889 9.948 9.786 9.836 9.784 9.814 9.237
(1,0,1) 9.973 9.949 9.963 9.616 9.957 9.441 9.617 9.948 9.911 9.952 9.671 9.887 9.358 9.667 9.881 9.819 9.934 9.814 9.807 9.32 9.775
(1,0,0) 9.857 9.859 9.869 9.717 9.867 9.5 9.496 9.923 9.868 9.858 9.811 9.855 9.627 9.62 9.822 9.882 9.882 9.924 9.873 9.807 9.823
(0,1,1) 9.971 9.949 9.947 9.411 9.965 9.635 9.551 9.956 9.891 9.882 9.252 9.943 9.676 9.669 9.885 9.749 9.745 9.161 9.931 9.767 9.783
(0,1,0) 9.925 9.883 9.864 9.517 9.892 9.746 9.578 9.943 9.899 9.886 9.637 9.902 9.875 9.657 9.891 9.905 9.832 9.706 9.889 9.937 9.68
(0,0,1) 9.958 9.904 9.914 9.494 9.931 9.537 9.815 9.909 9.845 9.896 9.665 9.895 9.665 9.846 9.848 9.835 9.928 9.758 9.924 9.709 9.945


