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AN EVALUATION OF SOME METHODS USED FOR
DETERMINATION OF HOMOGENOUS STRUCTURAL BREAK

POINT IN MEAN OF PANEL DATA

SELIM DAĞLIOĞLU AND M. AKIF BAKIR

Abstract. In this study, performances of correct break point estimation of
Simple Mean Shift Model Method, Fluctuation Test, Wald Statistic Test and
Kim Test methods used to investigate presence of structural break and deter-
mine the date of break in a panel data consisting of N time series, each of T
length, belonging to N cross-section have been investigated. In this context,
108 Monte Carlo simulations with each 3000 repeats have been carried out
for 3, 3, 4 and 3 levels of factors, respectively number of cross-section units,
length of series, size of break and proportion of break, to evaluate the perfor-
mance of these tests used for determination of structural break in panel data.
According to the Monte Carlo simulations it is concluded that Simple Mean
Shift Model approach has better performance of break point estimation than
other methods. Moreover, while Wald Test puts forth its best performance in
the case where the breaks in series are at the half of the series, Fluctuation
and Kim Tests showed their best performances in the case that the breaks are
at the third quarter of series. Generally, correct break point estimation per-
formances of tests decrease as the number of cross-section or length of series
increases, even if it is limited. The changes at the levels of the proportion
of break factor also lead to high accuracy estimation performance of different
methods. Moreover, increases at the size of break usually decreases rates of
correct estimation of methods and they approach to zero while means of the
series changed 40% and over after break.

1. Introduction

Structural break(s) is(are) permanent change(s) in the structure of variables,
due to permanent effects of economic or financial shocks, policy changes, cultural
and technological changes, etc., on the distribution of variables. Changes in the
behaviour of economic time series such as employment, growth and unemployment
can occur in the long run due to policy changes and various economic events.
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However, when the models used in examining the data for such variables are es-
timated, it is usually assumed that the model parameters do not change over the
sampling periods. This assumption makes the analysis relatively simple. However,
the assumption that a time series is not subject to a change throughout the sample
becomes more diffi cult to achieve as the length of the series increases. In the case of
structural breaks in series, continuing analysis without considering this structural
change can lead to incorrect estimations of model parameters. A typical example
of this is that the investigation of the presence of unit root in Nelson and Plosser
data; Nelson and Plosser [1], Perron [2], Zivot and Andrews [3] and Lumsdaine and
Papell [4] have achieved different results. Despite the use of the same data set in
these studies, the results differ depending on whether structural breaks are taken
into account and whether structural breaks are included in the model.
The time series consists of observations obtained over a single cross-sectional unit

at different times. Policy or technology changes often lead to permanent changes
in the structure of the time series. For this reason, structural breaks are often en-
countered in time series. However, some diffi culties arise when estimating the break
point in the time series. If a structural break occurs at any time point k0 of time se-
ries yt, the break point k0 can not be consistently predicted, regardless of how large
the sample is, and the estimator k̂ of the break point k0 is not consistent. There-
fore, it is usually attempted to estimate the break fraction instead of estimating the
k0’s in which the structural change occurs in the time series. The effectiveness of
the approach using a single time series in determining structural break depends on
two assumptions: First, the magnitude of structural break (the difference between
pre-break mean and post-break mean) is large enough. The second is that the true
point of break point k0 is far enough from the beginning and end of the sample.
In a single series it is impossible to identify break point when the regime has a
single observation [5], [6]. In the study of both single and multiple structural break
points in time series, asymptotic framework is used in which the magnitudes of
change(s) asymptotically converge to zero as the sample size increases in order to
obtain critical statistics [7]. In other words, obtaining the limit distribution of the
test statistics requires the assumption that the size of the structural break decreases
as the sample size increases [8]. In the structural break literature this assumption
is called the shrinking magnitude of structural break assumption. According to this
assumption, as the sample size increases in the time series, the break point can be
determined [9]. Both the break point inconsistency and the necessity of reduced
break are related to the problem of defining the break point in time series models.
The main reason for these two situations to emerge is that time series can not carry
enough information. Additional information is needed in order to determine the
actual break point in the time series. This information is tried to be obtained by
increasing the sample size. When examining structural break in panel data, the
additional information carried by the cross-sectional dimension of panel data elim-
inate the necessity of artificially increasing the number of observations using the
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reduced shrinking magnitude of structural break assumption. In addition, panel
data can be used to derive asymptotics around the actual break date, since it has
the cross-sectional dimension as well as the time dimension [9].
Although methods using panel data have significant advantages when compared

to methods using only time series or only cross-sectional data, methods using panel
data are much more complex. In this context, different methods for determining
structural break point in panel data have been developed in the structural break
literature. It has become widespread that structural break problem has been ex-
amined in panel data in recent years. The studies on the structural break problem
in the panel data are generally considered in two directions. The first is to inves-
tigate the existence of unit root in panel data in the presence of structural break.
The second is to determine the existence and date of structural break point. Two
approaches have been adopted in panel studies in relation to the assumptions made
about the position of structural break data. While the first considers the assump-
tion that structural breaks in all series of the panel have emerged in a common
date, in the second approach break point is assumed to be random in which break
point occur on a different date for each series depending on the distribution of
the random variable. The methods assuming the random break point are more
complicated than the methods considering the common break point hypothesis.
The assumption of the common break point has been used in the studies by

Han and Park [10], Joseph and Wolfson [11], Bai [12], Bai et al. [13], Emerson
and Kao [14], Bai and Perron [15], Kao et. al. [16], Feng et. al. [9], Kim [17],
Horváth and Hus̆ková [18], Chan et. al. [19] and Li et. al. [20]. On the other hand,
the assumption of random break point is considered in studies such as Joseph and
Wolfson [11], Joseph and Wolfson [21], Joseph, Vandal and Wolfson [22], Joseph at
al. [23], Joseph at al. [24] and Liao [6].
While there have been various methods developed in the literature on structural

breaks in panel data, no study has been found on the comparison of the performance
of these methods in the context of determining break point [25]. The contribution
of this study is to compare the correct break point estimation performance of some
methods used to determine the structural break point under the assumption of the
common break point, according to the factors the number of cross sections, time
series dimension, break size and break fraction. In this context, with the aid of
Monte Carlo simulations, the Simple Mean Shift Model Method proposed in Bai
[5], the Fluctuation Test and the Wald Statistic Test proposed in Emerson and Kao
[14] and the Kim Test proposed in Kim [17] performance are evaluated.
In the next section of the study, the performances of the considered methods

estimating the breakpoint are discussed. In the third section of the study, the data
generating process and the issues considered in determination of factor levels and
the assumption of Monte Carlo simulation are explained. In the fourth part of the
study, the results obtained by Monte Carlo simulations are given. In the fifth and
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last part, the results obtained in the study are discussed and some suggestions are
made.

2. Methods for Determination of Break point

Bai [5] considers the following simple mean shift model:

yit = µi1 + uit t = 1, 2, ..., k0

yit = µi2 + uit t = k0 + 1, ..., T.
(1)

where E (uit) = 0 for all i and t. In this model, each series has a break point at k0,
where k0 is unknown. The µi1 and µi2 are pre-break mean and post-break mean of
yit, respectively. For the simple mean shift model, he proposes the OLS estimator
of k0 as in Equation 2:

k̂ = arg min
1≤k≤T−1

SSR (k) . (2)

where sum of square of residuals SSRiT (k) is

SSRiT (k) =


k∑
t=1

(yit − ȳi1)2 +
T∑

t=k+1

(yit − ȳi2)2 , k = 1, 2, ..., T − 1

T∑
t=1

(yit − ȳi)2 , k = T

(3)

for each k = 1, 2, ..., T . Also ȳi is the average of all the observations of cross-section
unit defined by,

ȳi1 =
1

k

k∑
t=1

yit

ȳi2 =
1

T − k

T∑
t=k+1

yit

(4)

and sum of residual squares over all equations is as in Equation 5:

SSR (k) =

N∑
i=1

SSRiT (k). (5)

Emerson and Kao [14] consider the one-way random effect panel regression model
with the deterministic time trend given in Equation 6:

yit = α+ βtXt + vit

vit = µi + uit.
(6)

where β is the slope parameter, Xt = t
T , unobservable individual effects are µi ∼

iid
(
0, σ2µ

)
and disturbance term of AR(1) is uit = ρuit−1+εit, ε ∼ iid

(
0, σ2ε

)
. They

propose two different methods for testing the following null hypothesis

H0 : βt = β;∀t ∈ [1, T ] (7)
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meaning that there is no change in the model against the following alternative
hypothesis

H1 : βt =

{
β1 , t = 1, 2, ..., k
β2 , t = k + 1, ..., T

(8)

meaning that there exists a change in the k−point. They proposed to estimate the
break point according to these two methods, The first is based on the fluctuation
test of Ploberger, Kramer and Kontrus [26], while the second one is based on the
mean statistics of Andrew and Ploberger [27] and exponential Wald statistic and
the Wald statistic of Andrew [28]. In testing null hypothesis with fluctuation test,
if the difference

max
i=1,...,k

∣∣∣β̂k − β̂T ∣∣∣ (9)

is big enough, that is when β̂k is too much fluctuating, the null hypothesis is

rejected. In other words, there is a structural break at this point and
∣∣∣β̂k − β̂T ∣∣∣ is

the estimate of the break point. In Equation (9), β̂T denotes the estimate of the
slope parameter over all panel data estimated by OLS method, and β̂k, which is
estimated with recursive OLS, is

β̂k =

N∑
i=1

[
k∑
t=1

(
Xt − X̄k

)
yit

]
N∑
i=1

k∑
t=1

(
Xt − X̄k

)2 (10)

where

X̄k =
1

k

k∑
t=1

Xt.

In the Wald statistic test, the break point is estimated to be

k̂ = arg min
[Tr+≤k≤T−[Tr+]]

W1 (k) . (11)

Here,

σ̃2u =
1

NT

N∑
i=1

T∑
t=1

(vit − v̄i)2 (12)

and the estimation of σ20 is

σ20 =
σ2ε

(1− ρ)
2 . (13)

Thus,

W1 (k) =
σ̃2u
3σ20

W (k) . (14)
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In addition,

β̂1k =

N∑
i=1

[
k∑
t=1

(
Xt − X̄1k

)
yit

]
N∑
i=1

k∑
t=1

(
Xt − X̄1k

)2 (15)

β̂2k =

N∑
i=1

[
T∑

t=k+1

(
Xt − X̄2k

)
yit

]
N∑
i=1

T∑
t=k+1

(
Xt − X̄2k

)2 (16)

X̄1k =
1

k

k∑
t=1

Xt

and

X̄2k =
1

T − k

T∑
t=k+1

Xt.

Then W (k) is calculated as follows:

W (k) =
1

σ̂2u

(
β̂1k − β̂2k

)2
( N∑

i=1

k∑
t=1

(
Xt − X̄1k

)2)−1
+

(
N∑
i=1

T∑
t=k+1

(
Xt − X̄2k

)2)−1 . (17)

Kim [17] considers the model with the deterministic trend and the disturbance
component given in Equation 18:

yit = dit + uit , i = 1, ..., N and t = 1, ..., T. (18)

The deterministic component dit can be considered in three different ways to be

dit =

 µi + βit+ γiBt , Model I (Joint broken trend)
µi + βit+ θiCt + γiBt , Model II (Locally broken trend)

µi + βit+ θiCt , Model III (Mean shift)
(19)

where

Ct =

{
0 , t ≤ k0
1 , t > k0

(20)

and
Bt = (t− k0)Ct. (21)

Here, Equation (20) can be rewritten for all of three models, if t ≤ k0, then dit =
µi + βit and if t > k0, then

dit =

 µi − k0γi + (βi + γi) t , Model I (Joint broken trend)
µi − k0γi + θi + (βi + γi) t , Model II (Locally broken trend)

µi + βit+ θi , Model III (Mean shift)
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Models I and II are extended form of the panel data models reviewed by Perron
and Zhu [29] for the univariate case. Model III, on the other hand, is an extended
form so as to include a deterministic trend of the mean shift model examined in
Bai [5].
The regression coeffi cients in the model are not restricted to be common for each

section. For this reason, instead of estimating the regression coeffi cients jointly by
pooling the cross-section data, the regression coeffi cients can be estimated sep-
arately for each equation using the OLS method. Thus, in the Kim Test, the
individual OLS estimators of the regression coeffi cients for each equations are used
for each cross section unit [17].
The Kim test assumes that the actual break point is unknown and the break

fraction defined to be λ1 = k0/T ; λ1 ∈ [π, 1− π] , π ∈ (0, 1/2) is constant for
every T . It is also assumed that the break point k0 is common to all equations and
that the break fraction λ1 remains constant as the sample size grows.
Using the deterministic time trend definitions given in Equation (19), the model

in Equation (18) can be rewritten with matrix notation for each equation as

Yi
(T×1)

= Xk0
(T×3 or T×4)

Πi
(3×1 or 4×1)

Ui
(T×1)

(22)

where Yi = (yi1, ..., yiT )
′ and Ui = (ui1, ..., uiT )

′. The variables and coeffi cients of
Equation (22) are defined as follows:

Xk0 =

 [ι, τ , B] , Model I
[ι, τ , C,B] , Model II

[ι, τ , C] , Model III

Πi =


(µi, βi, γi)

′
, Model I

(µi, βi, θi, γi)
′
, Model II

(µi, βi, θi)
′

, Model III

where ι = (1, ..., 1)
′
, τ = (1, ..., T )

′
, C = (C1, ..., CT )

′
, B = (B1, ..., BT )

′
, Xk0 is

the collection of all dependent variables, and Πi is the regression coeffi cient for the
corresponding equation.
Then, the whole N equation system can be written as

Y = Xk0Π + U (23)

where Y = [Y1, ..., YN ] ,Π = [Π1, ...,ΠN ] and U = [U1, ..., UN ]. Also the row
vectors are defined as µ = (µ1, ..., µN ) , β = (β1, ..., βN ) , θ = (θ1, ..., θN ) andγ =

(γ1, ..., γN ). Then, an alternative expression for Π is
[
µ′, β′, γ′

]′
,
[
µ′, β′, θ′, γ′

]′
and[

µ′, β′, θ′
]′
for Model I, II and III, respectively.

A general break point and a general break fraction are denoted by k, and α =
k/T , respectively, and Xk is defined similarly to Xk0 . Then, the sum of residual
squares for each k, can be defined as follows:

SSR (k) = tr [Y ′ (I − Pk)Y ] (24)
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where Pk = Xk (X ′kXk)
−1
X ′k and tr[.] is trace operator. Thus, estimated break

point is the one minimizing the sum of residual squares such as

k̂ = arg min
k

SSR (k) (25)

and

λ̂ =
k̂

T
. (26)

3. Data generation and Monte-Carlo simulations

In this section, we evaluate the correct estimation performance of the Simple
Mean Shift Model Method (hereafter referred to as Bai Test) proposed by Bai [5],
the Fluctuation Test, Wald Statistic Test (hereafter referred to as Wald test) and
Kim Test proposed in Kim [17], for the break date with Monte Carlo simulations.
The panel data to which the tests are applied are generated in accordance with

the following model, also given in Equation (1):

yit = µi1 + uit, t = 1, 2, ..., k0

yit = µi2 + uit, t = k0 + 1, ..., T

where, i = 1, 2, ..., N , t = 1, 2, ..., T , yit is the observation value of the ith section
unit at time t, µi1 is the pre-break mean which is mean of the panel data before the
break date, µi2 is the post-break mean which is mean of the panel data after the
break date, k0 is the common break point and uit indicates the disturbance terms.
In the simulations, the disturbance terms are generated from independent and iden-

tically distributed uit
iid∼ N (0; 1), and, µi1 and µi2 are from µi1

iid∼ N (3; 0, 24) and

µi2
iid∼ N (3× γ; 0, 24) where γ denotes the break ratio.
The number of repetitions are decided by taking into account the difference

between asymptotics of the estimated break points in sequential run of simulations.
In the study, the number of repetitions was determined as 3000 runs with the
difference 0,001 between the average values of the break points predicted in each
repetition. In total, Monte Carlo simulations are repeated as many times as the
number of factor combinations depending on the level of the four factors under
investigation.
Various issues have been taken into account to determine the factor levels. These

issues can be summarized as follows: When examining the effects of time and cross-
section length on break point estimation performance, the levels of these factors are
defined as small, medium and large. The levels are chosen as 12, 32 and 120 for
both time dimension T and cross-sectional dimension N .
If the break point k0 is defined as a set of fixed values, the marginal effect of

the break point can not be observed due to the coexistence of changes in the break
point at different time dimension and the effects of changes in time dimension. For
this reason, instead of taking the break point k0 as a member of a fixed value set
in simulations, k0 is defined as an integer between 1 and T , k0 = [Tλ], λ ∈ (0, 1).
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Thus, in the simulations, breaks are allowed to occur in the first, second and third
quarter of the panel data, respectively, taking into account λ ∈ {0, 25; 0, 50; 0, 75}
to define the break fraction.
The final factor by which the effect on the break point estimation performance

is investigated is the magnitude of the break (µi2 − µi1). When the magnitude of
break factor levels are determined, the post-break mean is defined as

µi2 = µi1 × γ
where γ is the break ratio. Then, the magnitude of the break is constant and
written in the following form:

(µi2 − µi1) = γ × µi1 − µi1 = (γ − 1)µi1

Thus, the magnitude of the break is defined as the ratio of the pre-break mean.
Expression of the magnitude of break in this way allows it to be fixed for different
factor levels and to define the post-break mean to be smaller than the pre-break
mean. For this reason, when examining the effect of magnitude of break on the
performance of the tests, the break ratio factor, γ, is strictly defined as the pre-break
mean is used. The levels of the break ratio are defined as γ ∈ {1, 1; 0, 8; 1, 4; 1, 9} so
as to include the case where the post-break panel mean is smaller than the pre-break
panel mean.
Simulation is performed at a total of 108 points of the experimental design for

the factors time dimension, cross-section dimension, break fraction and break ratio,
with the levels 3, 3, 3 and 4, respectively.

4. Simulation Results

In this section, the simulation results obtained via the simulation design de-
scribed in the third section about correct break point estimation performance of
the Bai, Fluctuation, Wald, and Kim tests are given. After generation of panel
data, indicator variable is generated by using break point estimates of Bai, Fluctu-
ation, Wald and Kim Tests to estimate correct estimation rates. Indicator variable
shows whether estimated break point is equal actual break point or not. Indicator
variable defined as dummy variable is given below:

Dj =

{
1 , k̂j = k0
0 , k̂j 6= k0

where j (j = 1, ..., 4) shows the method used for estimating break point. This
variable can take two values as 0 or 1. Since the mean of the indicator variable is
on the [0, 1] interval, it shows the correct estimation rate of tests under the certain
factor assumptions. These rates have been used for evaluating the performance
for correct estimation of tests. Figure 1 shows the the effects of the changes in
the cross-section dimension on the correct estimation rates of the tests for different
time dimension in the case that the breakpoint occurs at the first quarter of the
series of the panel data and mean of the series decreases by %20 after break. When
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Figure 1. Simulation results for correct break point estimation
rates (γ = 0, 8 and λ = 0, 25)

the break fraction and the break ratio factor are fixed, correct estimation rates of
test convergences to zero by decreasing as both time and cross-section dimensions
increase. Nevertheless, it is seen that decreasing at the rate of correct break point
estimation are small. Moreover, while in the case where T = 12, correct estimation
rates of the Bai and Kim tests are different from zero, they converge to zero as the
time and cross-section dimensions increase. Correct estimation rates of the tests,
except the Bai’s, are zero for the bigger factor levels of T .If a break occurs in the
first quarter of the series and the mean of the series increases by 40% after break, the
correct break point estimation rates of all the tests decrease as the cross-sectional
dimension increases under different time dimensions. Compared to the case where
the mean of the series is reduced by 20%, the correct estimation rates of the tests
show a similar tendency. Nevertheless, in the current case, the correct break points
estimation rates of the tests are generally lower for all levels of the cross-sectional
dimension. In other words, an increase in the rate of break ratio causes to a decrease
in the correct estimation rates of the methods. In both cases, the highest correct
estimation rates are achieved with the Bai Test. In the case where a break in the
first quarter of the series and an 10% increase in the mean of the series after break,
the correct break point estimation rates of all the tests, except rates of Bai Test,
decreases as the cross-section size increases for different time dimensions. In panel
data, the Bai Test correct estimation rates increase (Figure 3). However, when
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Figure 2. Simulation results for correct break point estimation
rates (γ = 1, 4 and λ = 0, 25)

Figures 1 and 3 are evaluated jointly, the correct break point estimation rates of
the test converges each other for both break ratios of 10% and 20%.
Figures 1, 2 and 3 show that increments in the cross-section dimensions have an

effects towards decreasing the correct estimation rates of break points. A similar
situation is observed for time dimension and the break ratio. In other words,
according to the results obtained in Figures 1, 2 and 3, it can be said that the
increases in the cross section and time dimension and the increase in the break
ratio in the series have negative effect on the correct break points estimation rates
of the tests. Figure 4 shows the effects of the break fraction on the correct break
point estimation rates of Bai, Fructuation, Wald and Kim Tests when the time
dimension and cross section size are fixed at 12. From the Figure 4, it is seen that
the Wald Test has the highest correct estimation rate in the case that the breaks
occur at the midpoint of the series. In addition, if the breaks occur in the later
periods of the series, the correct break point estimation rates of the Fluctuation test
increase. The Fluctuation Test shows highest correct estimation rates in the panels
where break occurs in the second half of the series and the break ratio is small.
Compared to other methods, the Bai Test has a generally high correct estimation
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Figure 3. Simulation results for correct break point estimation
rates (γ = 1, 1 and λ = 0, 25)

rate and they are less influenced by break fraction. In addition, Kim Test provides
higher correct break point estimation rates if the break occurs in the later stages
of the series similar to Fluctuation test.
An important finding emerging from Figure 4 is that the changes in the break

fraction have effects on the correct estimation rates of the break point of the tests
at different ways. Moreover, changes in break fraction has limited effects on correct
break point estimation rates of the tests. Figure 5 shows the effects of the changes
in the break ratio on the correct break point estimation rates of tests when the
break occurred in first quarter, half or the third quarter of panel data formed by
N = 32 and T = 12. In general, the correct break point estimation rate of the
methods decreases as the break ratio increases.
In addition, if the post-break mean is 40% or more bigger than the pre-break

mean, methods with some exceptions can not accurately estimate the break point
depending on the break fraction in general. According to the region where the
breaks occur in the series, the test having the highest correct break point estimation
rate varies. In the case where the break occurs in the first, second and third quarter
of the series, the Bai, Wald and Kim tests have the highest correct estimation rates,
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Figure 4. Simulation results for correct break point estimation
rates (N = 12 and T = 12)

in order. Nevertheless, in the case where the break occurs in the third quarter of the
series and the break ratio is small, the Fluctuation Test has the highest correct break
point estimation rate. While the changes in the break fraction have a limited effect
on the correct break point estimation rates of the tests except Wald test, they lead
to change the tests having the highest correct break point estimation rates based
on the occurrence of break in different regions of the series. Figure 6 shows the
effects of changes in panel time dimension on the correct break point estimation
rates of Bai, Fluctuation, Wald and Kim Tests where the mean of the series is
reduced by 20% compared to the pre-break mean in the panel data consisting of
32 cross-sectional units. From Figure 6, it is seen that Bai Test mostly has higher
correct estimation rates than others. Furthermore, the change in the break fraction
leads to significant changes in the correct estimation rates of the tests. When the
break occurs in the middle of the series, the Wald Test has higher correct estimation
rates than others for T = 12, whereas in the third quarter of the series, the Kim
Test has higher correct estimation rate for the smallest time dimension. As the
time dimension increases at all levels of the break fraction factor, a decrease in
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Figure 5. Simulation results for correct break point estimation
rates (N = 32 and T = 12)

the correct estimation performance of the tests occurs and correct estimation rates
approach to zero.
Nevertheless, the Bai test is the one affected least against time dimension. Thus,

for medium and large time dimension, Bai Test has the highest correct break point
estimation rate. Figure 7 shows the effects of the cross-section dimension on the
correct break point estimation rates under the conditions that the break occurs
in the middle of the series, and the mean of the series increases by 10% in post-
break. it is seen from Figure 7 that the increase in cross-section dimension have
effect on the correct break point estimation rates of the methods on different ways.
However, the length of the series forming the panel has a limited impact on the
correct estimation rates for Bai Test, while other methods lead to a reduction in
the correct estimates. Accordingly, the highest accurate estimation rates for the
panels with short time series at these levels of the fraction section and fraction
rate factors are reached with the Wald Test, while the highest rates of the other
methods are reached with Bai Test as the time series length increases. Figure 8
shows the effects of the cross-section size under the conditions the break point in
the third quarter of the series and the mean of the series increases by 10% after
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Figure 6. Simulation results for correct break point estimation
rates (γ = 0, 8 and N = 32)

break. It is seen in Figure 8 that increase in the cross section dimension have a
different effects on the correct break point estimation rate of the methods. While
the increase in cross-section size leads to a decrease in the correct break point
estimation rate of the Fluctuation test, it leads to a slight increase in the correct
estimation rate of Bai Test. However, the length of time has a different effect on the
correct estimation rates of the methods and the correct estimation rates of the tests
vary under different time dimension values. While changes in time dimension have
a limited effect on the correct estimation rates of Bai Test, it leads to decrease in
the correct estimation rates of the other methods. Accordingly, while the highest
correct estimation rates in the panels with short time series at this level of the
break fraction and the break ratio factors are reached with the Fluctuation Test, as
the time lengths increase the highest correct estimation rates are reached with the
Bai Test. Moreover, when Figures 3, 7 and 8 are evaluated altogether, it can be
concluded that Bai Test has the highest correct estimation rates in the case where
break occurs in the first quarter of the series, Wald Test has the highest correct
estimation rates in the case where break occurs in the second quarter of the series
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Figure 7. Simulation results for correct break point estimation
rates (γ = 1, 1 and λ = 0, 5)

and Fluctuation Test has the highest rate in the case where break occurs in the
third quarter of the series.
However, while the level of the time dimension factor is 12, the Kim Test reveals

the correct estimation rates similar to that of the Bai Test. Figure 9 concludes
the effects of break ratio where a break occurs in the third quarter of the series
by fixing time dimension at 32. From the Figure 9 it is seen that the correct
estimation performance of the tests generally decreases as the break ratio increases.
All methods can no longer accurately estimate the actual break point when post-
break means of the series are bigger at the rate of %40 or greater than pre-break
means of the series. In addition, as the cross-section dimension increases, there is
a limited decrease in the correct estimation performance of the tests. The Figure
10 shows that in the panel data with 32 section units and 12 time points, the ratio
of the pre-break mean to the post-break mean and the part in which the break
occurs are observed to have a significant effect on the correct estimation rates of
the methods. While the highest correct break point estimation rates are reached
with the Bai Test if the break occurs in the first quarter of the series, the Wald Test
has the highest correct estimation rates in case the break occurs in the middle of
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Figure 8. Simulation results for correct break point estimation
rates (γ = 1, 1 and λ = 0, 75)

the series. When the break occurs in the third quarter of the series, the Fluctuation
Test has higher correct estimation rates if the change in the mean of the series is
small. Nevertheless, the Kim Test reveals higher correct estimation rates if the
change in the mean of the series is large. The Bai Test is the method of which the
correct estimation performance is least affected by the changes of break fraction.

5. Conclusion and Suggestions

The correct estimation performance of the Bai, Fluctuation, Wald Statistics and
Kim Tests, which are used to determine the structural break date in panel data, are
examined via Monte Carlo simulations for the factors time dimension, cross-section
dimension, break fraction and break ratio. The results can be concluded as follows:

• Bai Test has higher correct break point estimation rate than the other test
methods except for some specific factor levels. If the break occurs in the
first quarter of the series, the Bai Test shows a higher correct estimation
performance. The Bai Test is the method that is least affected by the
changes in the time dimension and the place on where the break point is.
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Figure 9. Simulation results for correct break point estimation
rates (T = 32 and λ = 0, 75)

• Wald Test has the highest correct estimation performance if the break oc-
curs in the middle of the series. Nevertheless, the Bai Test shows a higher
correct estimation performance if the break occurs in the middle of the se-
ries in panel data with large time dimensions since the changes in the time
dimension have effects on the correct break point estimation rate of Bai
and Wald Test on different ways.

• Correct estimation performance of the Fluctuation Test increases as the
distance between the starting point of the series forming the panel and
the break point increases. The Fluctuation Test shows a higher correct
estimation performance when the break is in the third quarter of the series.

• The Kim Test shows a lower correct estimation performance than in other
cases when the break is in the middle of the series. If the break occurs
in the third quarter of the series, the Kim Test reveals a higher correct
estimation performance. The Kim Test shows a higher correct estimation
performance than the Fluctuation Test in the case when the break occurs
in the third quarter of the series and where the time dimension of the panel
is medium or large.
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Figure 10. Simulation results for correct break point estimation
rates (N = 32 and T = 12)

• Mostly, increases in the cross-sectional dimension and/or time dimension
have the effect on the correct estimation performance of the methods, which
is slight but on decreasing direction. Nevertheless, the time dimension
changes have a small effect on the Bai Test.

• Changes in the break ratio generally have a negative effect on the correct
break point estimation performance of Bai, Fluctuation, Wald and Kim
Tests. The methods can no longer correct estimate the actual break point
when post-break mean is bigger 40% or more than the pre-break mean of
the series.

• While the highest correct estimation rates are reached with the Bai Test
in the case when the break occurs in the first quarter of the series, the
highest correct estimation rates can be reached by the Wald Test if the
break occurs in the middle of the series. In the case when the break occurs
in the third quarter of the series, if the change in the mean of the series is
small, the Fluctuation Test shows higher correct estimation rates, whereas
in the case of a large change in the mean of the series, the Kim Test reveals
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higher correct estimation rates. The method of which correct estimation
performance is less affected by the changes in the break fraction is Bai Test.

When evaluating the results of the tests concerning the correct break point es-
timation performance, it is seen that the correct estimation rates of the tests are
usually adversely affected by the increase in the factor levels such as increase in
the time or the cross-sectional dimensions. This may be due to a larger range of
estimation values when the time dimension increases, or the fact that, when the
cross-section dimension increases, the estimation of the break point estimates the
same value as the standard error decreases. The results so far are the results ob-
tained by evaluating test performances without considering the magnitude of the
difference between the actual date of break and the break point estimate. How-
ever, it should be taken into consideration that the performance of the tests can be
seen adverse since they do not estimate actual break date correctly at all, although
they steadily lead very close estimation to the break point. On the other hand,
we can only conclude that the tests have a good estimation performance since they
have estimated the true break date only once although they generally produce very
distant estimations to the actual break point.

6. Concluding Remarks

This paper investigates the performance of methods determining structural break
point in a panel data with only one common break point at the time dimension.
It is assumed that there is no serial correlation and/or cross section dependency.
Also, the performance evaluation is performed with a consideration that there does
not exist cross sectional heterogeneity. Although this study is limited for evaluation
of performance of the methods assuming time and/or cross sectional dependency,
it would be extended of the performance evaluation of these methods in terms
of sensitivity or robustness for panel data set with time and/or cross sectional
dependency.
The Monte Carlo simulations are based on the Equation 1 of the study which

is the basic model of Bai (2010). Therefore, it could be expected that the Bai
method or the methods which are compatible to this methodology such as Kim
(2011) Model III has better performances more than others in this study. Since
correct estimation performance of the methods have been investigated instead of
comparing the performance of the considered tests in testing the null hypothesis,
the data set is generated by considering only the model based on Equation 1 and the
correct estimation rates of the methods were compared. Therefore, although data
are produced according to the model proposed by Bai (2010), other methods have
executed higher correct estimation performance than Bai (2010) and Kim (2011) at
some factor levels. Thus, it has been possible to compare which test is more likely
to correct estimate the break point according to the factor levels of the break point
estimation methods considered in the study. Nevertheless, in the future studies, it
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may be useful to compare the correct estimation perspectives of the tests according
to factor levels by considering the data generation processes based on other models.
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