Research Article
BibTex RIS Cite
Year 2024, Volume: 3 Issue: 1, 1 - 10

Abstract

References

  • [1] Anthony, C.J. (2010). Geotechnical Mathematic Models. Masters Degree Thesis, Lousiana State university.
  • [2] Arbelaiz A., Fernández B., Cantero G., Llano-Ponte R., Valea A, and Mondragon I. (2005). Mechanical Properties of Flaxfibre/Polypropylene Composites. Influence of Fibre/Matrix modification and glass fibre hybridization,” Composites Part A; 36(12):1637–1644.
  • [3] Azwa Z.N., Yousif B.F., Manalo A.C., and Karunasena W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design; 47:424–442.
  • [4] Bahari, S.A., Chik, M.S., Kassim, M.A., Som Said, C.M., Misnon, M.I. and Mohamed, Z. (2012). Frictional and heat resistance characteristics of coconut husk particle filled automotive brake pad. In: American Institute of Physics Conference Series,162-168
  • [5] BS 4350. (1996). Wood/ Timber Glue for Structural purpose Part 1: British Standard Institute.
  • [6] Bulgaria Hadifa A.M., M.R. Edward M.I. (2005). Bamboo fiber filled organic composites: the influence of Filler bonding additives. Polycomposite Testing; 21:139-144
  • [7] Camirah, A.M., Papiro, A., Ribairo, C. (2010). Physical Properties of wood Composites; 22–24.
  • [8] Coutinho F.M.B., Costa T.H.S., and Carvalho D.L. (2014). Polypropylene-Wood Fiber Composites: Effect of Treatment and Mixing Conditions on Mechanical Properties. Journal of Applied Polymer Science; 65(6):1227–1235.
  • [9] Deepika, K., Bhaskar, R.C., Ramana, R.D. (2013). Fabrication and performance evaluation of composite material for wear resistance application. International Journal of Engineering Science and Innovative Technology; 2(6): 66-70.
  • [10] Espinach F.X, Julian F., Verdaguer N. (2013). Analysis of tensile and flexural modulus in Hemp Strands/Polypropylene Composites. Composites B; 47:339–343.
  • [11] Habiba, R., Farouk, C., and Ishleem, D.A. (2013) Properties of wood-dust Reinforced Polypropylene Composites. Journal of ModernisedScience concept and Technological Approach; 1:160-170.
  • [12] Jackson, J.A. (1998). mechanical Properties of Bamboo stick reinforced composite. Kluwer Academic Print.Indian standard, IS 848-2006. Wood Adhesive Standards of Plywood for concrete civil works. Specification; 2010.
  • [13] Liping G., Deku M.S. (1992). Production of Sawdust-Plastic Composite Using Compression Moulding” International Journal of Material Science; 2:87
  • [14] Nduka, N.A. (2006). Effect of Palm kernel shell as a replacement for coarse aggregate in asphaltic concrete. Journal of Engineering Practices and Technologies, 4(8):153-159.
  • [15] Osaremwinda J.O. and Nwachukwu J.C. (2007). Effect of particles size on some properties of Rick husk particle board’. Advanced Materials Research, Trans Tech Publication Ltd, Switzerland, pp18–19, and pp.43 – 48.
  • [16] Osaremwinda J.O. (2006). Effect of resin Concentration on the Properties of Groundnut Husk Particleboard”, Global Journal of Mechanical Engineeing; 7(1):60-64.
  • [17] Pantani, R., De Santis, F., Brucato, V., Titomanlio, G. (2004). Analysis of Gate Freeze-Off Time in Injection Molding. Polymer Engineering and Science; 33(4):23-35.
  • [18] Parada-Soria A., Yao H.F., Alvarado-Tenorio B., Sanchez-Cadena L., and Romo-Uribe A. (2013). Recycled HDPE-Tetrapack Composites. Isothermal Crystallization, Light Scattering and Mechanical Properties. MRS Proceedings; 1485.
  • [19] Peterfield, B.C. (2004). Practical concrete Technology (revised edition). English University Press. [20] Springer, Heidelberg Yahaya, A., Yakubu T., and Minasiru, T. (2009). Physical properties of sawdust from sahara region. Journal of Timber Research Vol 8(2):22-35.
  • [21] Yalinkilic Y., Imamura M., Tahashi H., Kalaycioglu, G., Nemli Z., Demirci and Ozdemir T. (1998). Biological, Physical and Mechanical Properties of Particleboard manufactured from waste tea leave, International Biodeterioration and Biodegradation; 41:75-84.
  • [22] Zaimoglu A.S., Yetimoglu T. (2012). Strength behaviour of fine grained soil reinforced with randomly distributed polypropylene fibers. Geotech Geol Eng 30(1):197–203.
  • [23] Zehev T. and Costas G.G. (2001). “principles of polymer processing”. New York: John Wlley and sons, 2001, chapter 1 and 14.
  • [24] Anna, N., Siregar, I. Z., Supriyanto, Karlinasari, L., Sudrajat, D. J. (2018). Genetic variation of growth and its relationship with pilodyn penetration on the provenance-progeny trial of jabon (Neolamarkcia cadamba (Roxb) Bosser) at Parung Panjang, Bogor,” J. Trop. Wood Tech. 16(2); 160-177.
  • [25] Anna, N., S., Karlinasari, L., Sudrajat, D.J., Siregar, I.Z. (2020). The growth, pilodyn penetration, and wood properties of 12 Neolamarckia cadamba provenances.
  • [26] Yongqi H., Vincent J.L., Gan, H.C. (2020). Behavior of a Two-Way Lightweight Steel–Concrete Composite Slab Voided with Thin-Walled Core Boxes towards Sustainable Construction. Materials; 13(18):4129; https://doi.org/10.3390/ma13184129

Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive

Year 2024, Volume: 3 Issue: 1, 1 - 10

Abstract

This research focused on the use of Guinea grass (GG), wood sawdust (SD), crack filler (CF), and wood adhesive (WA) to enhance the mechanical properties of plywood. The plywood with dimensions of 450 mm x 450 mm x 135 mm was used to produce lightweight composite slab laminates of the following dimensions: 450mm x 450mm x 145mm, 450mm x 450mm x 170mm, 450mm x 450mm x 195mm, 450mm x 450mm x 220mm, and 450mm x 450 x 245mm, respectively. To ensure tenacious bonding and lamination between the composite slab and the plywood, a wood adhesive or glue was applied evenly on the top and bottom faces of the laminates at 2.5mm thickness. Ten (10) lightweight composite slabs each were produced with mix ratios of 0.5:0.5:1.5:0.5 and 0.5:0.75:1.5:0.5 (WA: CF: SD: GG), respectively. The results obtained show that the mean compressive strength, tensile strength, density, hardness, flexural strength, and deflection of the developed laminate composite range from 74.6 N/m2 to 76.5 N/m2, 89.50 N/m2 to 93.53 N/m2, 1246.92 kg/m3 to 1334.81 kg/m3, 59.5kgf to 63.5kgf, and 7.06 N/m2 to 7.52 N/m2, 29.0 mm to 86.52 mm while that of plywood only ranges from 35 N/m2 to 65 N/m2, 45 N/m2 to 79 N/m2, 500 kg/m3 to 811 kg/m3, 32kgf to 56kgf, 2.5 N/m2 to 6.5 N/m2, and 20.7 mm to 45.6 mm for average compressive strength, tensile strength density, flexural strength, and de-flection respectively. The results obtained show that the introduction of guinea grass, wood sawdust, crack filler, and wood adhesive improved the mechanical properties of the lightweight composite slabs developed from plywood.

References

  • [1] Anthony, C.J. (2010). Geotechnical Mathematic Models. Masters Degree Thesis, Lousiana State university.
  • [2] Arbelaiz A., Fernández B., Cantero G., Llano-Ponte R., Valea A, and Mondragon I. (2005). Mechanical Properties of Flaxfibre/Polypropylene Composites. Influence of Fibre/Matrix modification and glass fibre hybridization,” Composites Part A; 36(12):1637–1644.
  • [3] Azwa Z.N., Yousif B.F., Manalo A.C., and Karunasena W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design; 47:424–442.
  • [4] Bahari, S.A., Chik, M.S., Kassim, M.A., Som Said, C.M., Misnon, M.I. and Mohamed, Z. (2012). Frictional and heat resistance characteristics of coconut husk particle filled automotive brake pad. In: American Institute of Physics Conference Series,162-168
  • [5] BS 4350. (1996). Wood/ Timber Glue for Structural purpose Part 1: British Standard Institute.
  • [6] Bulgaria Hadifa A.M., M.R. Edward M.I. (2005). Bamboo fiber filled organic composites: the influence of Filler bonding additives. Polycomposite Testing; 21:139-144
  • [7] Camirah, A.M., Papiro, A., Ribairo, C. (2010). Physical Properties of wood Composites; 22–24.
  • [8] Coutinho F.M.B., Costa T.H.S., and Carvalho D.L. (2014). Polypropylene-Wood Fiber Composites: Effect of Treatment and Mixing Conditions on Mechanical Properties. Journal of Applied Polymer Science; 65(6):1227–1235.
  • [9] Deepika, K., Bhaskar, R.C., Ramana, R.D. (2013). Fabrication and performance evaluation of composite material for wear resistance application. International Journal of Engineering Science and Innovative Technology; 2(6): 66-70.
  • [10] Espinach F.X, Julian F., Verdaguer N. (2013). Analysis of tensile and flexural modulus in Hemp Strands/Polypropylene Composites. Composites B; 47:339–343.
  • [11] Habiba, R., Farouk, C., and Ishleem, D.A. (2013) Properties of wood-dust Reinforced Polypropylene Composites. Journal of ModernisedScience concept and Technological Approach; 1:160-170.
  • [12] Jackson, J.A. (1998). mechanical Properties of Bamboo stick reinforced composite. Kluwer Academic Print.Indian standard, IS 848-2006. Wood Adhesive Standards of Plywood for concrete civil works. Specification; 2010.
  • [13] Liping G., Deku M.S. (1992). Production of Sawdust-Plastic Composite Using Compression Moulding” International Journal of Material Science; 2:87
  • [14] Nduka, N.A. (2006). Effect of Palm kernel shell as a replacement for coarse aggregate in asphaltic concrete. Journal of Engineering Practices and Technologies, 4(8):153-159.
  • [15] Osaremwinda J.O. and Nwachukwu J.C. (2007). Effect of particles size on some properties of Rick husk particle board’. Advanced Materials Research, Trans Tech Publication Ltd, Switzerland, pp18–19, and pp.43 – 48.
  • [16] Osaremwinda J.O. (2006). Effect of resin Concentration on the Properties of Groundnut Husk Particleboard”, Global Journal of Mechanical Engineeing; 7(1):60-64.
  • [17] Pantani, R., De Santis, F., Brucato, V., Titomanlio, G. (2004). Analysis of Gate Freeze-Off Time in Injection Molding. Polymer Engineering and Science; 33(4):23-35.
  • [18] Parada-Soria A., Yao H.F., Alvarado-Tenorio B., Sanchez-Cadena L., and Romo-Uribe A. (2013). Recycled HDPE-Tetrapack Composites. Isothermal Crystallization, Light Scattering and Mechanical Properties. MRS Proceedings; 1485.
  • [19] Peterfield, B.C. (2004). Practical concrete Technology (revised edition). English University Press. [20] Springer, Heidelberg Yahaya, A., Yakubu T., and Minasiru, T. (2009). Physical properties of sawdust from sahara region. Journal of Timber Research Vol 8(2):22-35.
  • [21] Yalinkilic Y., Imamura M., Tahashi H., Kalaycioglu, G., Nemli Z., Demirci and Ozdemir T. (1998). Biological, Physical and Mechanical Properties of Particleboard manufactured from waste tea leave, International Biodeterioration and Biodegradation; 41:75-84.
  • [22] Zaimoglu A.S., Yetimoglu T. (2012). Strength behaviour of fine grained soil reinforced with randomly distributed polypropylene fibers. Geotech Geol Eng 30(1):197–203.
  • [23] Zehev T. and Costas G.G. (2001). “principles of polymer processing”. New York: John Wlley and sons, 2001, chapter 1 and 14.
  • [24] Anna, N., Siregar, I. Z., Supriyanto, Karlinasari, L., Sudrajat, D. J. (2018). Genetic variation of growth and its relationship with pilodyn penetration on the provenance-progeny trial of jabon (Neolamarkcia cadamba (Roxb) Bosser) at Parung Panjang, Bogor,” J. Trop. Wood Tech. 16(2); 160-177.
  • [25] Anna, N., S., Karlinasari, L., Sudrajat, D.J., Siregar, I.Z. (2020). The growth, pilodyn penetration, and wood properties of 12 Neolamarckia cadamba provenances.
  • [26] Yongqi H., Vincent J.L., Gan, H.C. (2020). Behavior of a Two-Way Lightweight Steel–Concrete Composite Slab Voided with Thin-Walled Core Boxes towards Sustainable Construction. Materials; 13(18):4129; https://doi.org/10.3390/ma13184129
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Dıckson Davıd Olodu 0000-0003-3383-2543

Andrew Erameh 0000-0002-6463-143X

Publication Date
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Olodu, D. D., & Erameh, A. (n.d.). Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive. Cukurova University Journal of Natural and Applied Sciences, 3(1), 1-10.
AMA Olodu DD, Erameh A. Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive. Cukurova University Journal of Natural and Applied Sciences. 3(1):1-10.
Chicago Olodu, Dıckson Davıd, and Andrew Erameh. “Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive”. Cukurova University Journal of Natural and Applied Sciences 3, no. 1 n.d.: 1-10.
EndNote Olodu DD, Erameh A Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive. Cukurova University Journal of Natural and Applied Sciences 3 1 1–10.
IEEE D. D. Olodu and A. Erameh, “Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive”, Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 1, pp. 1–10.
ISNAD Olodu, Dıckson Davıd - Erameh, Andrew. “Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive”. Cukurova University Journal of Natural and Applied Sciences 3/1 (n.d.), 1-10.
JAMA Olodu DD, Erameh A. Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive. Cukurova University Journal of Natural and Applied Sciences.;3:1–10.
MLA Olodu, Dıckson Davıd and Andrew Erameh. “Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive”. Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 1, pp. 1-10.
Vancouver Olodu DD, Erameh A. Improving Wood Mechanical Properties Using Guinea Grass, Wood Sawdust, Crack Filler And Wood Adhesive. Cukurova University Journal of Natural and Applied Sciences. 3(1):1-10.