Research Article
BibTex RIS Cite

ÇEŞİTLİ ESNEK ATALET ARTIRIMI MEKANİZMALARININ PERİYODİK TİTREŞİM YALITICISI TASARIMINA YÖNELİK PARAMETRİK İNCELEMESİ

Year 2022, Volume: 8 Issue: 3, 511 - 523, 31.12.2022

Abstract

Bu çalışmada, iç içe gömülmüş atalet artırımı mekanizmalarıyla oluşturulmuş bir periyodik yapı, titreşim yalıtıcısı olarak tasarlanmıştır. İlk olarak, çeşitli esnek atalaet artırımı mekanizma konfigürasyonları önerilmiştir. Yapılan parametrik çalışmalar neticesinde, bu mekanizmalardan en geniş titreşim yalıtımı frekans aralığına sahip olanı belirlenmiştir. Ardından, bu seçilen tasarım, periyodik yapının birim hücresi (yani, periyodik yapıda tekrar eden yapı bloğu) olarak kullanılmıştır. Son olarak, periyodik yapının titreşim yalıtımı performansını göstermek için deplasman iletkenliği (yani, frekans cevap fonksiyonu) grafikleri sunulmuştur.

References

  • [1] S. S. Rao, Mechanical Vibrations, Upper Saddle River: Prentice Hall, 2011.
  • [2] S. G. Kelly, Mechanical Vibrations: Theory and Applications, Stamford: Cengage Learning, 2012.
  • [3] D. J. Inman, Engineering Vibrations, Upper Saddle River: Pearson Education, 2014.
  • [4] R. A. Ibrahim, “Recent advances in nonlinear passive vibration isolators”, Journal of Sound and Vibration, vol. 314, no. 3-5, pp. 371-452, 2008. Doi: 10.1016/j.jsv.2008.01.014
  • [5] C. Liu, X. Jing, S. Daley and F. Li, “Recent advances in micro-vibration isolation”, Mechanical Systems and Signal Processing, vol. 56-57, pp. 55-80, 2015. Doi: 10.1016/j.ymssp.2014.10.007
  • [6] P. S. Balaji and K. K. Selvakumar, “Applications of nonlinearity in passive vibration control: a review”, Journal of Vibration Engineering & Technologies, vol. 9, pp. 183-213, 2021. Doi: 10.1007/s42417-020-00216-3
  • [7] S. Hao, Z. Wu, F. Li and C. Zhang, “Numerical and experimental investigations on the band-gap characteristics of metamaterial multi-span beams”, Physics Letters A, vol. 383, no. 36, p. 126029, 2019. Doi: 10.1016/j.physleta.2019.126029
  • [8] L. Zhao, Z. Q. Lu, H. Ding and L. Q. Chen, “Experimental observation of transverse and longitudinal wave propagation in a metamaterial periodically arrayed with nonlinear resonators”, Mechanical Systems and Signal Processing, vol. 170, p. 108836, 2022. Doi: 10.1016/j.ymssp.2022.108836
  • [9] C. Yilmaz, G. M. Hulbert and N. Kikuchi, “Phononic band gaps induced by inertial amplification in periodic media”, Physical Review B, vol. 76, no. 5, p. 054309, 2007. Doi: 10.1103/PhysRevB.76.054309
  • [10] C. Yilmaz and G. M. Hulbert, “Theory of phononic gaps induced by inertial amplification in finite structures”, Physics Letters A, vol. 374, no. 34, pp. 3576-3584, 2010. Doi: 10.1016/j.physleta.2010.07.001
  • [11] S. Taniker and C. Yilmaz, “Generating ultra wide vibration stop bands by a novel inertial amplification mechanism topology with flexure hinges”, International Journal of Solids and Structures, vol. 106, pp. 129-138, 2017. Doi: 10.1016/j.ijsolstr.2016.11.026
  • [12] A. H. Orta and C. Yilmaz, “Inertial amplification induced phononic band gaps generated by a compliant axial to rotary motion conversion mechanism”, Journal of Sound and Vibration, vol. 439, pp. 329-343, 2019. Doi: 10.1016/j.jsv.2018.10.014
  • [13] C. Xi, L. Dou, Y. Mi and H. Zheng, “Inertial amplification induced band gaps in corrugated-core sandwich panels”, Composite Structures, vol. 267, p. 113918, 2021. Doi: 10.1016/j.compstruct.2021.113918
  • [14] M. Barys, J. S. Jensen and N. M. M. Frandsen, “Efficient attenuation of beam vibrations by inertial amplification”, European Journal of Mechanics - A/Solids, vol. 71, pp. 245-257, 2018. Doi: 10.1016/j.euromechsol.2018.04.001
  • [15] J. Zhou, L. Dou, K. Wang, D. Xu and H. Ouyang, “A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams”, Nonlinear Dynamics, vol. 96, pp. 647-665, 2019. Doi: 10.1007/s11071-019-04812-1
  • [16] S. Chowdhury, A. Banerjee and S. Adhikari, “Enhanced seismic base isolation using inertial amplifiers”, Structures, vol. 33, pp. 1340-1353, 2021. Doi: 10.1016/j.istruc.2021.04.089
  • [17] Y. Zeng, L. Cao, S. Wan, T. Guo, Y. F. Wang, Q. J. Du, B. Assouar and Y. S. Wang, “Seismic metamaterials: generating low-frequency bandgaps induced by inertial amplification”, International Journal of Mechanical Sciences, vol. 221, p. 107224, 2022. Doi: 10.1016/j.ijmecsci.2022.107224
  • [18] G. Acar and C. Yilmaz, “Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures”, Journal of Sound and Vibration, vol. 332, no. 24, pp. 6389-6404, 2013. Doi: 10.1016/j.jsv.2013.06.022
  • [19] O. Yuksel and C. Yilmaz, “Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms”, Journal of Sound and Vibration, vol. 355, pp. 232–245, 2015. Doi: 10.1016/j.jsv.2015.06.016
  • [20] O. Yuksel and C. Yilmaz, “Size and topology optimization of inertial amplification induced phononic band gap structures”, In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2017, Tampa, Florida, USA, p. V013T01A007. Doi: 10.1115/IMECE2017-71342
  • [21] O. Yuksel and C. Yilmaz, “Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms”, International Journal of Solids and Structures, vol. 203, pp. 138–150, 2020. Doi: 10.1016/j.ijsolstr.2020.07.018

A PARAMETRIC INVESTIGATION ON VARIOUS COMPLIANT INERTIAL AMPLIFICATION MECHANISMS FOR A PERIODIC VIBRATION ISOLATOR DESIGN

Year 2022, Volume: 8 Issue: 3, 511 - 523, 31.12.2022

Abstract

In this study, a vibration isolator is designed as a periodic structure, which is constructed with embedded inertial amplification mechanisms. At first, various compliant inertial amplification mechanism configurations are proposed. Among them, the one with the widest vibration isolation frequency band is selected via conducted parametric studies. Then, the determined mechanism is utilized as the unit cell (i.e., the repetitive building block) of the periodic structure. Finally, the displacement transmissibility (i.e., Frequency Response Function (FRF)) plots are presented to demonstrate the vibration isolation performance of the designed periodic structure.

References

  • [1] S. S. Rao, Mechanical Vibrations, Upper Saddle River: Prentice Hall, 2011.
  • [2] S. G. Kelly, Mechanical Vibrations: Theory and Applications, Stamford: Cengage Learning, 2012.
  • [3] D. J. Inman, Engineering Vibrations, Upper Saddle River: Pearson Education, 2014.
  • [4] R. A. Ibrahim, “Recent advances in nonlinear passive vibration isolators”, Journal of Sound and Vibration, vol. 314, no. 3-5, pp. 371-452, 2008. Doi: 10.1016/j.jsv.2008.01.014
  • [5] C. Liu, X. Jing, S. Daley and F. Li, “Recent advances in micro-vibration isolation”, Mechanical Systems and Signal Processing, vol. 56-57, pp. 55-80, 2015. Doi: 10.1016/j.ymssp.2014.10.007
  • [6] P. S. Balaji and K. K. Selvakumar, “Applications of nonlinearity in passive vibration control: a review”, Journal of Vibration Engineering & Technologies, vol. 9, pp. 183-213, 2021. Doi: 10.1007/s42417-020-00216-3
  • [7] S. Hao, Z. Wu, F. Li and C. Zhang, “Numerical and experimental investigations on the band-gap characteristics of metamaterial multi-span beams”, Physics Letters A, vol. 383, no. 36, p. 126029, 2019. Doi: 10.1016/j.physleta.2019.126029
  • [8] L. Zhao, Z. Q. Lu, H. Ding and L. Q. Chen, “Experimental observation of transverse and longitudinal wave propagation in a metamaterial periodically arrayed with nonlinear resonators”, Mechanical Systems and Signal Processing, vol. 170, p. 108836, 2022. Doi: 10.1016/j.ymssp.2022.108836
  • [9] C. Yilmaz, G. M. Hulbert and N. Kikuchi, “Phononic band gaps induced by inertial amplification in periodic media”, Physical Review B, vol. 76, no. 5, p. 054309, 2007. Doi: 10.1103/PhysRevB.76.054309
  • [10] C. Yilmaz and G. M. Hulbert, “Theory of phononic gaps induced by inertial amplification in finite structures”, Physics Letters A, vol. 374, no. 34, pp. 3576-3584, 2010. Doi: 10.1016/j.physleta.2010.07.001
  • [11] S. Taniker and C. Yilmaz, “Generating ultra wide vibration stop bands by a novel inertial amplification mechanism topology with flexure hinges”, International Journal of Solids and Structures, vol. 106, pp. 129-138, 2017. Doi: 10.1016/j.ijsolstr.2016.11.026
  • [12] A. H. Orta and C. Yilmaz, “Inertial amplification induced phononic band gaps generated by a compliant axial to rotary motion conversion mechanism”, Journal of Sound and Vibration, vol. 439, pp. 329-343, 2019. Doi: 10.1016/j.jsv.2018.10.014
  • [13] C. Xi, L. Dou, Y. Mi and H. Zheng, “Inertial amplification induced band gaps in corrugated-core sandwich panels”, Composite Structures, vol. 267, p. 113918, 2021. Doi: 10.1016/j.compstruct.2021.113918
  • [14] M. Barys, J. S. Jensen and N. M. M. Frandsen, “Efficient attenuation of beam vibrations by inertial amplification”, European Journal of Mechanics - A/Solids, vol. 71, pp. 245-257, 2018. Doi: 10.1016/j.euromechsol.2018.04.001
  • [15] J. Zhou, L. Dou, K. Wang, D. Xu and H. Ouyang, “A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams”, Nonlinear Dynamics, vol. 96, pp. 647-665, 2019. Doi: 10.1007/s11071-019-04812-1
  • [16] S. Chowdhury, A. Banerjee and S. Adhikari, “Enhanced seismic base isolation using inertial amplifiers”, Structures, vol. 33, pp. 1340-1353, 2021. Doi: 10.1016/j.istruc.2021.04.089
  • [17] Y. Zeng, L. Cao, S. Wan, T. Guo, Y. F. Wang, Q. J. Du, B. Assouar and Y. S. Wang, “Seismic metamaterials: generating low-frequency bandgaps induced by inertial amplification”, International Journal of Mechanical Sciences, vol. 221, p. 107224, 2022. Doi: 10.1016/j.ijmecsci.2022.107224
  • [18] G. Acar and C. Yilmaz, “Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures”, Journal of Sound and Vibration, vol. 332, no. 24, pp. 6389-6404, 2013. Doi: 10.1016/j.jsv.2013.06.022
  • [19] O. Yuksel and C. Yilmaz, “Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms”, Journal of Sound and Vibration, vol. 355, pp. 232–245, 2015. Doi: 10.1016/j.jsv.2015.06.016
  • [20] O. Yuksel and C. Yilmaz, “Size and topology optimization of inertial amplification induced phononic band gap structures”, In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2017, Tampa, Florida, USA, p. V013T01A007. Doi: 10.1115/IMECE2017-71342
  • [21] O. Yuksel and C. Yilmaz, “Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms”, International Journal of Solids and Structures, vol. 203, pp. 138–150, 2020. Doi: 10.1016/j.ijsolstr.2020.07.018
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

Enes Er 0000-0003-0429-4467

Erol Türkeş 0000-0002-9601-7119

Osman Yuksel 0000-0001-9492-1756

Publication Date December 31, 2022
Submission Date July 28, 2022
Acceptance Date December 3, 2022
Published in Issue Year 2022 Volume: 8 Issue: 3

Cite

IEEE E. Er, E. Türkeş, and O. Yuksel, “A PARAMETRIC INVESTIGATION ON VARIOUS COMPLIANT INERTIAL AMPLIFICATION MECHANISMS FOR A PERIODIC VIBRATION ISOLATOR DESIGN”, GJES, vol. 8, no. 3, pp. 511–523, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg