Research Article
BibTex RIS Cite

Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes

Year 2022, Volume: 3 Issue: 1, 28 - 33, 28.06.2022
https://doi.org/10.55195/jscai.1122514

Abstract

This paper aims to investigate the performances of a semi-active tuned mass damper (STMD) used to reduce the vibrations of buildings under different seismic excitation by the real-time hybrid simulation (RTHS) method. In the STMD, the MR damper is used as a control element with a variable damping feature. The RTHS method is an alternative to experimentally studying the STMD system. MR damper is critically significant for the system and is experimentally installed. At the same time, the other parts are designed in numerical simulation and tested simultaneously. MR damper is a control element whose damping value can change according to the amount of voltage transmitted. Therefore, the groundhook control method determines the MR damper voltage variations. The results show that the control method applied to MR damper-controlled STMD effectively suppresses structural vibrations.

References

  • [1] H. Aggumus and S. Cetin, “Experimental investigation of semiactive robust control for structures with magnetorheological dampers,” J. Low Freq. Noise Vib. Act. Control, vol. 37, no. 2, pp. 216–234, Jun. 2018, doi: 10.1177/0263092317711985.
  • [2] H. Aggumus and R. Guclu, “Robust H∞ Control of STMDs Used in Structural Systems by Hardware in the Loop Simulation Method,” Actuators, vol. 9, no. 3, p. 55, Jul. 2020, doi: 10.3390/act9030055.
  • [3] M. Paksoy and H. Aggümüş, “MR Sönümleyicili Yarı Aktif Ayarlı Kütle Sönümleyicisinin Uyarlamalı Kontrolü,” Avrupa Bilim Ve Teknol. Derg., no. 33, Art. no. 33, Jan. 2022, doi: 10.31590/ejosat.1020498.
  • [4] A. Turan, H. Aggümüş, Mr Damperli Yari Aktif Yapisal Sistem İçin Optimal Pid Kontrolcü Tasarımı, Mühendislik Alaninda Uluslararasi Araştirmalar II, Eğitim Yayınevi, ss 101-110, 2021.
  • [5] R. Guclu and H. Yazici, “Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller,” Nonlinear Dyn., vol. 58, no. 3, pp. 553–564, Nov. 2009, doi: 10.1007/s11071-009-9500-5.
  • [6] R. Guclu and H. Yazici, “Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers,” J. Sound Vib., vol. 318, no. 1–2, pp. 36–49, Nov. 2008, doi: 10.1016/j.jsv.2008.03.058.
  • [7] R. Guclu, “Fuzzy logic control of vibrations of analytical multi-degree-of-freedom structural systems,” Turk. J. Eng. Environ. Sci., vol. 27, no. 3, pp. 157–168, 2003.
  • [8] A. Y. T. Leung and H. Zhang, “Particle swarm optimization of tuned mass dampers,” Eng. Struct., vol. 31, no. 3, pp. 715–728, Mar. 2009, doi: 10.1016/j.engstruct.2008.11.017.
  • [9] P. Xiang and A. Nishitani, “Optimum design for more effective tuned mass damper system and its application to base-isolated buildings: OPTIMUM DESIGN FOR MORE EFFECTIVE TMD,” Struct. Control Health Monit., vol. 21, no. 1, pp. 98–114, Jan. 2014, doi: 10.1002/stc.1556.
  • [10] U. Aldemir, “Optimal control of structures with semiactive-tuned mass dampers,” J. Sound Vib., vol. 266, no. 4, pp. 847–874, Sep. 2003, doi: 10.1016/S0022-460X(03)00191-3.
  • [11] P. Y. Lin, L. L. Chung, and C. H. Loh, “Semiactive Control of Building Structures with Semiactive Tuned Mass Damper,” Comput.-Aided Civ. Infrastruct. Eng., vol. 20, no. 1, pp. 35–51, Jan. 2005, doi: 10.1111/j.1467-8667.2005.00375.x.
  • [12] K. T. Tse, K. C. S. Kwok, P. A. Hitchcock, B. Samali, and M. F. Huang, “Vibration control of a wind-excited benchmark tall building with complex lateral-torsional modes of vibration,” Adv. Struct. Eng., vol. 10, no. 3, pp. 283–304, 2007.
  • [13] H.-S. Kim and J.-W. Kang, “Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm,” Eng. Struct., vol. 41, pp. 242–257, Aug. 2012, doi: 10.1016/j.engstruct.2012.03.038.
  • [14] H.-S. Kim, “Seismic response control of adjacent buildings coupled by semi-active shared TMD,” Int. J. Steel Struct., vol. 16, no. 2, pp. 647–656, Jun. 2016, doi: 10.1007/s13296-016-6030-0.
  • [15] A. Bathaei, S. M. Zahrai, and M. Ramezani, “Semi-active seismic control of an 11-DOF building model with TMD+MR damper using type-1 and -2 fuzzy algorithms,” J. Vib. Control, vol. 24, no. 13, pp. 2938–2953, Jul. 2018, doi: 10.1177/1077546317696369.
  • [16] Aly, Aly Mousaad, “Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers,” Wind Struct., vol. 21, no. 5, pp. 565–595, Nov. 2015, doi: 10.12989/WAS.2015.21.5.565.
  • [17] M. Setareh, J. K. Ritchey, T. M. Murray, J.-H. Koo, and M. Ahmadian, “Semiactive Tuned Mass Damper for Floor Vibration Control,” J. Struct. Eng., vol. 133, no. 2, pp. 242–250, Feb. 2007, doi: 10.1061/(ASCE)0733-9445(2007)133:2(242).
  • [18] P.-Y. Lin, T.-K. Lin, and J.-S. Hwang, “A semi-active mass damping system for low- and mid-rise buildings,” Earthq. Struct., vol. 4, no. 1, pp. 63–84, Jan. 2013, doi: 10.12989/EAS.2013.4.1.063.
  • [19] F. Weber, H. Distl, S. Fischer, and C. Braun, “MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations,” Actuators, vol. 5, no. 4, p. 27, Dec. 2016, doi: 10.3390/act5040027.
  • [20] J.-H. Koo, M. Ahmadian, M. Setareh, and T. Murray, “In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers:,” J. Vib. Control, Feb. 2004, doi: 10.1177/1077546304032020.
  • [21] H. Aggümüş, Simülasyon Çevriminde Donanım Yöntemiyle Yarı Aktif Ayarlı Kütle Sönümleyicilerinin Performans Analizi. Doktora Tezi, İstanbul: YTÜ Fen Bilimleri Enstitüsü, 2020.
  • [22] M. N. S. Hadi and Y. Arfiadi, “Optimum Design of Absorber for MDOF Structures,” J. Struct. Eng., vol. 124, no. 11, pp. 1272–1280, Nov. 1998, doi: 10.1061/(ASCE)0733-9445(1998)124:11(1272).
  • [23] M. P. Singh, E. E. Matheu, and L. E. Suarez, “Active and semi‐active control of structures under seismic excitation,” Earthq. Eng. Struct. Dyn., vol. 26, no. 2, pp. 193–213, 1997.
  • [24] Y. Ohtori, R. E. Christenson, B. F. Spencer Jr, and S. J. Dyke, “Benchmark control problems for seismically excited nonlinear buildings,” J. Eng. Mech., vol. 130, no. 4, pp. 366–385, 2004.
  • [25] S. Cetin, E. Zergeroglu, S. Sivrioglu, and I. Yuksek, “A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation,” Nonlinear Dyn., vol. 66, no. 4, pp. 731–743, 2011.
Year 2022, Volume: 3 Issue: 1, 28 - 33, 28.06.2022
https://doi.org/10.55195/jscai.1122514

Abstract

References

  • [1] H. Aggumus and S. Cetin, “Experimental investigation of semiactive robust control for structures with magnetorheological dampers,” J. Low Freq. Noise Vib. Act. Control, vol. 37, no. 2, pp. 216–234, Jun. 2018, doi: 10.1177/0263092317711985.
  • [2] H. Aggumus and R. Guclu, “Robust H∞ Control of STMDs Used in Structural Systems by Hardware in the Loop Simulation Method,” Actuators, vol. 9, no. 3, p. 55, Jul. 2020, doi: 10.3390/act9030055.
  • [3] M. Paksoy and H. Aggümüş, “MR Sönümleyicili Yarı Aktif Ayarlı Kütle Sönümleyicisinin Uyarlamalı Kontrolü,” Avrupa Bilim Ve Teknol. Derg., no. 33, Art. no. 33, Jan. 2022, doi: 10.31590/ejosat.1020498.
  • [4] A. Turan, H. Aggümüş, Mr Damperli Yari Aktif Yapisal Sistem İçin Optimal Pid Kontrolcü Tasarımı, Mühendislik Alaninda Uluslararasi Araştirmalar II, Eğitim Yayınevi, ss 101-110, 2021.
  • [5] R. Guclu and H. Yazici, “Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller,” Nonlinear Dyn., vol. 58, no. 3, pp. 553–564, Nov. 2009, doi: 10.1007/s11071-009-9500-5.
  • [6] R. Guclu and H. Yazici, “Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers,” J. Sound Vib., vol. 318, no. 1–2, pp. 36–49, Nov. 2008, doi: 10.1016/j.jsv.2008.03.058.
  • [7] R. Guclu, “Fuzzy logic control of vibrations of analytical multi-degree-of-freedom structural systems,” Turk. J. Eng. Environ. Sci., vol. 27, no. 3, pp. 157–168, 2003.
  • [8] A. Y. T. Leung and H. Zhang, “Particle swarm optimization of tuned mass dampers,” Eng. Struct., vol. 31, no. 3, pp. 715–728, Mar. 2009, doi: 10.1016/j.engstruct.2008.11.017.
  • [9] P. Xiang and A. Nishitani, “Optimum design for more effective tuned mass damper system and its application to base-isolated buildings: OPTIMUM DESIGN FOR MORE EFFECTIVE TMD,” Struct. Control Health Monit., vol. 21, no. 1, pp. 98–114, Jan. 2014, doi: 10.1002/stc.1556.
  • [10] U. Aldemir, “Optimal control of structures with semiactive-tuned mass dampers,” J. Sound Vib., vol. 266, no. 4, pp. 847–874, Sep. 2003, doi: 10.1016/S0022-460X(03)00191-3.
  • [11] P. Y. Lin, L. L. Chung, and C. H. Loh, “Semiactive Control of Building Structures with Semiactive Tuned Mass Damper,” Comput.-Aided Civ. Infrastruct. Eng., vol. 20, no. 1, pp. 35–51, Jan. 2005, doi: 10.1111/j.1467-8667.2005.00375.x.
  • [12] K. T. Tse, K. C. S. Kwok, P. A. Hitchcock, B. Samali, and M. F. Huang, “Vibration control of a wind-excited benchmark tall building with complex lateral-torsional modes of vibration,” Adv. Struct. Eng., vol. 10, no. 3, pp. 283–304, 2007.
  • [13] H.-S. Kim and J.-W. Kang, “Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm,” Eng. Struct., vol. 41, pp. 242–257, Aug. 2012, doi: 10.1016/j.engstruct.2012.03.038.
  • [14] H.-S. Kim, “Seismic response control of adjacent buildings coupled by semi-active shared TMD,” Int. J. Steel Struct., vol. 16, no. 2, pp. 647–656, Jun. 2016, doi: 10.1007/s13296-016-6030-0.
  • [15] A. Bathaei, S. M. Zahrai, and M. Ramezani, “Semi-active seismic control of an 11-DOF building model with TMD+MR damper using type-1 and -2 fuzzy algorithms,” J. Vib. Control, vol. 24, no. 13, pp. 2938–2953, Jul. 2018, doi: 10.1177/1077546317696369.
  • [16] Aly, Aly Mousaad, “Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers,” Wind Struct., vol. 21, no. 5, pp. 565–595, Nov. 2015, doi: 10.12989/WAS.2015.21.5.565.
  • [17] M. Setareh, J. K. Ritchey, T. M. Murray, J.-H. Koo, and M. Ahmadian, “Semiactive Tuned Mass Damper for Floor Vibration Control,” J. Struct. Eng., vol. 133, no. 2, pp. 242–250, Feb. 2007, doi: 10.1061/(ASCE)0733-9445(2007)133:2(242).
  • [18] P.-Y. Lin, T.-K. Lin, and J.-S. Hwang, “A semi-active mass damping system for low- and mid-rise buildings,” Earthq. Struct., vol. 4, no. 1, pp. 63–84, Jan. 2013, doi: 10.12989/EAS.2013.4.1.063.
  • [19] F. Weber, H. Distl, S. Fischer, and C. Braun, “MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations,” Actuators, vol. 5, no. 4, p. 27, Dec. 2016, doi: 10.3390/act5040027.
  • [20] J.-H. Koo, M. Ahmadian, M. Setareh, and T. Murray, “In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers:,” J. Vib. Control, Feb. 2004, doi: 10.1177/1077546304032020.
  • [21] H. Aggümüş, Simülasyon Çevriminde Donanım Yöntemiyle Yarı Aktif Ayarlı Kütle Sönümleyicilerinin Performans Analizi. Doktora Tezi, İstanbul: YTÜ Fen Bilimleri Enstitüsü, 2020.
  • [22] M. N. S. Hadi and Y. Arfiadi, “Optimum Design of Absorber for MDOF Structures,” J. Struct. Eng., vol. 124, no. 11, pp. 1272–1280, Nov. 1998, doi: 10.1061/(ASCE)0733-9445(1998)124:11(1272).
  • [23] M. P. Singh, E. E. Matheu, and L. E. Suarez, “Active and semi‐active control of structures under seismic excitation,” Earthq. Eng. Struct. Dyn., vol. 26, no. 2, pp. 193–213, 1997.
  • [24] Y. Ohtori, R. E. Christenson, B. F. Spencer Jr, and S. J. Dyke, “Benchmark control problems for seismically excited nonlinear buildings,” J. Eng. Mech., vol. 130, no. 4, pp. 366–385, 2004.
  • [25] S. Cetin, E. Zergeroglu, S. Sivrioglu, and I. Yuksek, “A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation,” Nonlinear Dyn., vol. 66, no. 4, pp. 731–743, 2011.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hüseyin Aggümüş 0000-0002-7158-677X

Rahmi Güçlü 0000-0003-0996-7923

Publication Date June 28, 2022
Submission Date May 27, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Aggümüş, H., & Güçlü, R. (2022). Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes. Journal of Soft Computing and Artificial Intelligence, 3(1), 28-33. https://doi.org/10.55195/jscai.1122514
AMA Aggümüş H, Güçlü R. Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes. JSCAI. June 2022;3(1):28-33. doi:10.55195/jscai.1122514
Chicago Aggümüş, Hüseyin, and Rahmi Güçlü. “Hybrid Experimental Investigation of MR Damper Controlled Tuned Mass Damper Used for Structures under Earthquakes”. Journal of Soft Computing and Artificial Intelligence 3, no. 1 (June 2022): 28-33. https://doi.org/10.55195/jscai.1122514.
EndNote Aggümüş H, Güçlü R (June 1, 2022) Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes. Journal of Soft Computing and Artificial Intelligence 3 1 28–33.
IEEE H. Aggümüş and R. Güçlü, “Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes”, JSCAI, vol. 3, no. 1, pp. 28–33, 2022, doi: 10.55195/jscai.1122514.
ISNAD Aggümüş, Hüseyin - Güçlü, Rahmi. “Hybrid Experimental Investigation of MR Damper Controlled Tuned Mass Damper Used for Structures under Earthquakes”. Journal of Soft Computing and Artificial Intelligence 3/1 (June 2022), 28-33. https://doi.org/10.55195/jscai.1122514.
JAMA Aggümüş H, Güçlü R. Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes. JSCAI. 2022;3:28–33.
MLA Aggümüş, Hüseyin and Rahmi Güçlü. “Hybrid Experimental Investigation of MR Damper Controlled Tuned Mass Damper Used for Structures under Earthquakes”. Journal of Soft Computing and Artificial Intelligence, vol. 3, no. 1, 2022, pp. 28-33, doi:10.55195/jscai.1122514.
Vancouver Aggümüş H, Güçlü R. Hybrid experimental investigation of MR damper controlled tuned mass damper used for structures under earthquakes. JSCAI. 2022;3(1):28-33.