Research Article
BibTex RIS Cite

HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU

Year 2022, Volume: 27 Issue: 1, 219 - 236, 30.04.2022
https://doi.org/10.17482/uumfd.945808

Abstract

Bu makalede, X-Bant ’ta hibrit Mikroşerit-YTED (Yalıtkan Taban Entegreli Dalga Kılavuzu) bant geçiren filtrenin optimizasyon çalışması yapılmıştır. Yüksek geçiren bir YTED filtre ile alçak geçiren bir mikroşerit filtrenin seri entegrasyonuyla elde edilen hibrit bant geçiren filtrenin geometrisindeki asimetrik bölümler düzeltilmiştir. Optimizasyon çalışmasında, CST (Computer Simulation Technology) Studio Suite simülasyon programındaki 5 farklı optimizasyon algoritma tekniği hibrit M-YTED bant geçiren filtreye uygulanmıştır. Filtreye uygulanan bu tekniklerin sonuçları karşılaştırılmalı olarak verilmiştir. Metotlar karşılaştırıldığında, geçiş bandındaki S11 değerleri toplamının en düşük değerde olması nedeniyle Parçacık Sürü Optimizasyon Algoritması seçilmiştir. Filtrenin w4 parametresinin değeri 6,165 mm olarak elde edilmiştir. Filtrenin kalite faktörü, optimizasyon çalışmasıyla Guvenli ve diğ., (2021)’nin çalışmasına göre 3,21 kat artırılmıştır. Hibrit Mikroşerit-YTED bant geçiren filtrenin geçiş bandı [ω1-ω2] 7,60 GHz ile 8,40 GHz frekans aralığında, filtrenin merkez frekansı (ω0) 7,90 GHz, filtrenin bant genişliği de 0,80 GHz (%10,01) olacak şekilde tasarlanmıştır. M-YTED bant geçiren filtrenin simülasyon sonuçlarına göre, merkez frekansı 8,15 GHz ve bant genişliği 0,92 GHz'dir (%11,29). Analitik ve simülasyon sonuçları karşılaştırıldığında, analitik sonuçlara göre simülasyon merkez frekansındaki frekans değişimi %1,98 ve bant genişliği değişimi %15’dir. Analitik ve simülasyon sonuçlarının birbiriyle uyumlu olduğu görülmektedir.

References

  • 1. Alburaikan A. (2016). Metamaterial Structure Inspired Miniature RF/Microwave Filters, Doktora Tezi, U.M. Fen Bilimleri Enstitüsü, Manchester.
  • 2. Arslan, H., Sofyalı, A. ve Ünal, E. (2020) Genetik, Parçacık Sürü ve Nelder-Mead Simpleks Algoritmalarının Fırlatma Yörüngesi Optimizasyonu Üzerinden Karşılaştırılması, 8. Ulusal Havacılık ve Uzay Konferansı, Ankara, 1-9.
  • 3. Bozzi, M., Pasian, M., Perregrini, L. ve Wu, K. (2009) On the Looses in Substrate Integrated Waveguides and Cavities, International Journal of Microvawe and Wireless Technologies, 1(5): 395-401. doi: https://doi.org/10.1017/S1759078709990493
  • 4. Celis, S., Farhat, M., Almansouri, A. S., Bagci, H., ve Salama, K. N. (2020) Simplified Modal-Cancellation Approach for Substrate-Integrated-Waveguide Narrow-Band Filter Design, Electronics 2020, 9(962), 1-15. doi: 10.3390/electronics9060962
  • 5. Chen, P., Li, L., Yang, K. ve Chen, Q. (2018) Hybrid Spoof Surface Plasmon Polariton and Substrate Integrated Waveguide Broadband Bandpass Filter With Wide Out-of-Band Rejection, IEEE Microwave and Wireless Components Letters, 28(11): 984-986. doi: 10.1109/LMWC.2018.2869290
  • 6. Chen, X.P. ve Wu, K. (2014) Substrate Integrated Waveguide Filter: Basic Design Rules and Fundamental Structure Features. IEEE Microwave Magazine, 15(5): 108–116. doi: 10.1109/MMM.2014.2321263
  • 7. Dai, X., Yang, Q., Du, H., Jianxing, L., Cheng, G. ve Zhang, A. (2021) Direct Synthesis Approach for Designing High Selectivity Microstrip Distributed Bandpass Filters Combined with Deep Learning, Int. J. Electron. Commun., 131, 153499. doi: 10.1016/j.aeue.2020.153499
  • 8. Deslandes, D. ve Wu, K. (2001) Integrated microstrip and rectangular waveguide in planar form, IEEE Microwave and Wireless Components Letters, 11(2): 68-70. doi:10.1109/7260.914305
  • 9. Dong, Y., Yang, B., Yu, Z. ve Zhou, J. (2020) Robust Fast Electromagnetic Optimization of SIW Filters Using Model-Based Deviation Estimation and Jacobian Matrix Update, IEEE Access, 8, 2708-2722. doi: 10.1109/ACCESS.2019.2961750
  • 10. Ghosh, S., vd. (2012) A Differential Covariance Matrix Adaptation Evolutionary Algorithm for Real Parameter Optimization, Information Sciences 182(1):199-219. doi: 10.1016/j.ins.2011.08.014
  • 11. Guvenli, K., Yenikaya, S. ve Seçmen, M. (2021) Analysis, Design, and Actual Fabrication of a Hybrid Microstrip-SIW Bandpass Filter Based on Cascaded Hardware Integration at X-Band. Elektronika Ir Elektrotechnika, 27(1), 23-28. doi: 10.5755/j02.eie.27479
  • 12. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/optimization/, Erişim Tarihi: 22.05.2021, Konu: Optimizasyon Teknikleri.
  • 13. https://rf-tools.com/lc-filter/, Erişim Tarihi: 09.09.2021, Konu: RF-Tools Online Filtre Devre Tasarım Uygulaması.
  • 14. https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator. html, Erişim Tarihi: 09.09.2021, Konu: LTspice XVII Filtre Devre Tasarım Uygulaması.
  • 15. https://www.keysight.com/zz/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html, Erişim Tarihi: 09.09.2021, Konu: ADS Devre Simülatörü.
  • 16. Hussein, O.I., Shamaileh, K.A.A., Dib, N.I., Nosrati, A., Abushamleh, S., Georgiev, D.G. ve Kumar, D.V. (2020) Substrate Integrated Waveguide Bandpass Filtering With FourierVarying Via-Hole Walling, IEEE Access, 8, 139706-139714, doi: 10.1109/ACCESS.2020.3012994
  • 17. Karaboğa, D. (2020) Yapay Zeka Optimizasyon Algoritmaları, Nobel Yayınevi, Ankara.
  • 18. Palecek J., Vestenicky, M. ve Ticha, D. (2012) Optimization of RF band pass filter by genetic algoritm, 2012 ELEKTRO, 79-82, doi:10.1109/ELEKTRO.2012.6225576
  • 19. Palecek J., Vestenicky, P., Vestenicky, M. ve Spalek, J. (2011) Optimization of Microstrip Filter Dimensions by Differential Evolution Algorithm, INES 2011, Poprad, Slovakia. doi: 10.1109/INES.2011.5954740
  • 20. Pozar, D. M. (2012) Microwave Engineering, NJ: John Wiley & Sons Inc., New York.
  • 21. Sun, J., Sun, S., Yu, X. ve Chen, Y. P. (2019) A Deep Neural Network Based Technique of Lossy Microwave Coupled Resonator Filters, Microw. Opt Technol. Lett., 61, 2169-2173, doi: 10.1002/mop.31865
  • 22. Winder, S. (2005) Analog ve Dijital Filtre Tasarımı, Bilişim Yayınevi, İstanbul.
  • 23. Weiping, L., Zongxi, T., ve Xin, C. (2017) Design of a SIW Bandpass Filter Using Defected Ground Structure with CSRRs, Active and Passive Electronic Components, 2017, 1-6, doi: https://doi.org/10.1155/2017/1606341
  • 24. Wu, Y., Yang, K., Chen, P., Zhang, L. ve Li, G. (2021) Novel air-filled substrate integrated waveguide bandpass filter with nonresonant node structures. Microw Opt Technol Lett., 63, 2916– 2920, doi: https://doi.org/10.1002/mop.32985
  • 25. Xu,J., Jian B. J., Long L. Z. ve Chen, R.S. (2016) Optimisation of SIW bandpass filter with wide and sharp stopband using space mapping, International Journal of Electronics, 103(12): 2042-2051, doi: 10.1080/00207217.2016.1178338

Design and Optimization of Hybrid Microstrip-SIW Bandpass Filter on X-Band

Year 2022, Volume: 27 Issue: 1, 219 - 236, 30.04.2022
https://doi.org/10.17482/uumfd.945808

Abstract

In this article, the optimization study of hybrid Microstrip-SIW (Substrate Integrated Waveguide) band-pass filter in X-Band has been carried out. Asymmetrical sections in the geometry of the hybrid band-pass filter obtained by serial integration of a high-pass SIW filter and a low-pass microstrip filter are corrected. In the optimization study, 5 different optimization algorithm techniques in the CST (Computer Simulation Technology) Studio Suite simulation program were applied to the hybrid M-SIW bandpass filter. The results of these techniques applied to the filter are given comparatively. Particle Swarm Optimization Algorithm was chosen because the sum of the S11 values in the passband was the lowest when the methods were compared. The value of the w4 parameter of the filter was obtained as 6.165 mm. The quality factor of the filter was increased by 3.21 times with the optimization study according to the study of Guvenli et al. (2021). The passband [ω1-ω2] of the hybrid Microstrip-SIW bandpass filter is designed in the frequency range of 7.60 GHz to 8.40 GHz, the center frequency of the filter (ω0) is 7.90 GHz and the bandwidth of the filter is 0.80 GHz (10.01%). According to the simulation results of M-SIW bandpass filter, the center frequency is 8.15 GHz and the bandwidth is 0.92 GHz (11.29%). When analytical and simulation results are compared, it is seen that frequency change in the simulation center frequency is 1.98% and change in bandwidth is 15%. It is seen that analytical and simulation results are compatible with each other.

References

  • 1. Alburaikan A. (2016). Metamaterial Structure Inspired Miniature RF/Microwave Filters, Doktora Tezi, U.M. Fen Bilimleri Enstitüsü, Manchester.
  • 2. Arslan, H., Sofyalı, A. ve Ünal, E. (2020) Genetik, Parçacık Sürü ve Nelder-Mead Simpleks Algoritmalarının Fırlatma Yörüngesi Optimizasyonu Üzerinden Karşılaştırılması, 8. Ulusal Havacılık ve Uzay Konferansı, Ankara, 1-9.
  • 3. Bozzi, M., Pasian, M., Perregrini, L. ve Wu, K. (2009) On the Looses in Substrate Integrated Waveguides and Cavities, International Journal of Microvawe and Wireless Technologies, 1(5): 395-401. doi: https://doi.org/10.1017/S1759078709990493
  • 4. Celis, S., Farhat, M., Almansouri, A. S., Bagci, H., ve Salama, K. N. (2020) Simplified Modal-Cancellation Approach for Substrate-Integrated-Waveguide Narrow-Band Filter Design, Electronics 2020, 9(962), 1-15. doi: 10.3390/electronics9060962
  • 5. Chen, P., Li, L., Yang, K. ve Chen, Q. (2018) Hybrid Spoof Surface Plasmon Polariton and Substrate Integrated Waveguide Broadband Bandpass Filter With Wide Out-of-Band Rejection, IEEE Microwave and Wireless Components Letters, 28(11): 984-986. doi: 10.1109/LMWC.2018.2869290
  • 6. Chen, X.P. ve Wu, K. (2014) Substrate Integrated Waveguide Filter: Basic Design Rules and Fundamental Structure Features. IEEE Microwave Magazine, 15(5): 108–116. doi: 10.1109/MMM.2014.2321263
  • 7. Dai, X., Yang, Q., Du, H., Jianxing, L., Cheng, G. ve Zhang, A. (2021) Direct Synthesis Approach for Designing High Selectivity Microstrip Distributed Bandpass Filters Combined with Deep Learning, Int. J. Electron. Commun., 131, 153499. doi: 10.1016/j.aeue.2020.153499
  • 8. Deslandes, D. ve Wu, K. (2001) Integrated microstrip and rectangular waveguide in planar form, IEEE Microwave and Wireless Components Letters, 11(2): 68-70. doi:10.1109/7260.914305
  • 9. Dong, Y., Yang, B., Yu, Z. ve Zhou, J. (2020) Robust Fast Electromagnetic Optimization of SIW Filters Using Model-Based Deviation Estimation and Jacobian Matrix Update, IEEE Access, 8, 2708-2722. doi: 10.1109/ACCESS.2019.2961750
  • 10. Ghosh, S., vd. (2012) A Differential Covariance Matrix Adaptation Evolutionary Algorithm for Real Parameter Optimization, Information Sciences 182(1):199-219. doi: 10.1016/j.ins.2011.08.014
  • 11. Guvenli, K., Yenikaya, S. ve Seçmen, M. (2021) Analysis, Design, and Actual Fabrication of a Hybrid Microstrip-SIW Bandpass Filter Based on Cascaded Hardware Integration at X-Band. Elektronika Ir Elektrotechnika, 27(1), 23-28. doi: 10.5755/j02.eie.27479
  • 12. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/optimization/, Erişim Tarihi: 22.05.2021, Konu: Optimizasyon Teknikleri.
  • 13. https://rf-tools.com/lc-filter/, Erişim Tarihi: 09.09.2021, Konu: RF-Tools Online Filtre Devre Tasarım Uygulaması.
  • 14. https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator. html, Erişim Tarihi: 09.09.2021, Konu: LTspice XVII Filtre Devre Tasarım Uygulaması.
  • 15. https://www.keysight.com/zz/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html, Erişim Tarihi: 09.09.2021, Konu: ADS Devre Simülatörü.
  • 16. Hussein, O.I., Shamaileh, K.A.A., Dib, N.I., Nosrati, A., Abushamleh, S., Georgiev, D.G. ve Kumar, D.V. (2020) Substrate Integrated Waveguide Bandpass Filtering With FourierVarying Via-Hole Walling, IEEE Access, 8, 139706-139714, doi: 10.1109/ACCESS.2020.3012994
  • 17. Karaboğa, D. (2020) Yapay Zeka Optimizasyon Algoritmaları, Nobel Yayınevi, Ankara.
  • 18. Palecek J., Vestenicky, M. ve Ticha, D. (2012) Optimization of RF band pass filter by genetic algoritm, 2012 ELEKTRO, 79-82, doi:10.1109/ELEKTRO.2012.6225576
  • 19. Palecek J., Vestenicky, P., Vestenicky, M. ve Spalek, J. (2011) Optimization of Microstrip Filter Dimensions by Differential Evolution Algorithm, INES 2011, Poprad, Slovakia. doi: 10.1109/INES.2011.5954740
  • 20. Pozar, D. M. (2012) Microwave Engineering, NJ: John Wiley & Sons Inc., New York.
  • 21. Sun, J., Sun, S., Yu, X. ve Chen, Y. P. (2019) A Deep Neural Network Based Technique of Lossy Microwave Coupled Resonator Filters, Microw. Opt Technol. Lett., 61, 2169-2173, doi: 10.1002/mop.31865
  • 22. Winder, S. (2005) Analog ve Dijital Filtre Tasarımı, Bilişim Yayınevi, İstanbul.
  • 23. Weiping, L., Zongxi, T., ve Xin, C. (2017) Design of a SIW Bandpass Filter Using Defected Ground Structure with CSRRs, Active and Passive Electronic Components, 2017, 1-6, doi: https://doi.org/10.1155/2017/1606341
  • 24. Wu, Y., Yang, K., Chen, P., Zhang, L. ve Li, G. (2021) Novel air-filled substrate integrated waveguide bandpass filter with nonresonant node structures. Microw Opt Technol Lett., 63, 2916– 2920, doi: https://doi.org/10.1002/mop.32985
  • 25. Xu,J., Jian B. J., Long L. Z. ve Chen, R.S. (2016) Optimisation of SIW bandpass filter with wide and sharp stopband using space mapping, International Journal of Electronics, 103(12): 2042-2051, doi: 10.1080/00207217.2016.1178338
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Kemal Güvenli 0000-0002-6676-3284

Sibel Yenikaya 0000-0002-9423-1752

Mustafa Secmen 0000-0002-7656-4051

Publication Date April 30, 2022
Submission Date May 31, 2021
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Güvenli, K., Yenikaya, S., & Secmen, M. (2022). HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 219-236. https://doi.org/10.17482/uumfd.945808
AMA Güvenli K, Yenikaya S, Secmen M. HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU. UUJFE. April 2022;27(1):219-236. doi:10.17482/uumfd.945808
Chicago Güvenli, Kemal, Sibel Yenikaya, and Mustafa Secmen. “HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 1 (April 2022): 219-36. https://doi.org/10.17482/uumfd.945808.
EndNote Güvenli K, Yenikaya S, Secmen M (April 1, 2022) HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 219–236.
IEEE K. Güvenli, S. Yenikaya, and M. Secmen, “HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU”, UUJFE, vol. 27, no. 1, pp. 219–236, 2022, doi: 10.17482/uumfd.945808.
ISNAD Güvenli, Kemal et al. “HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (April 2022), 219-236. https://doi.org/10.17482/uumfd.945808.
JAMA Güvenli K, Yenikaya S, Secmen M. HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU. UUJFE. 2022;27:219–236.
MLA Güvenli, Kemal et al. “HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 1, 2022, pp. 219-36, doi:10.17482/uumfd.945808.
Vancouver Güvenli K, Yenikaya S, Secmen M. HİBRİT MİKROŞERİT-YTED BANT GEÇİREN FİLTRENİN X-BANT’TA TASARIMI VE OPTİMİZASYONU. UUJFE. 2022;27(1):219-36.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.