Yıl 2018, Cilt 4, Sayı 10, Sayfalar 100 - 108 2018-04-28

USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT

Zulqifli Alqadri [1]

54 114

Experiment-based learning is a quite effective learning method to study chemistry. Thus chemistry laboratory is extremely needed in the learning process since it is used as a place where students learn and build their knowledge by applying theory, research and scientific development. However, chemistry experiments have some limitations in the real laboratory, such as students using hazardous and relatively expensive tools and chemicals and it takes more time to prepare and conduct experiments. One of the most suitable media to overcome some problems in the real laboratory is using virtual laboratory. The virtual-based experiment, as an advanced technology product, is quite cheap, safe, effective and efficient alternative media. This study aims to investigate the effectiveness of chemistry virtual laboratory in direct instruction model to enhance student’s achievement on colligative properties of solution topic. Direct instruction model emphasizes on the declarative and procedural knowledge. It consist of five phases: orientation, presentation or demonstration, highly structured practice, guided practice, and independent practice phases, where in this study the virtual laboratory was implemented in the guided practice phase. This Pre-Experiment Research used One Group Pre-test and Post Test Design where both consist of 20 multiple choice items. The participants in this study were the grade XII science students in one of the senior high schools in Bulukumba Regency, South-Sulawesi Province, Indonesia. The subject were 30 students consisted of 10 males and 20 females in the first half of the academic year. Data were obtained using 20 multiple choice items of achievement test, either from pre-test or post-test. Three criteria of the effectiveness must be fulfilled to investigate the effectiveness of virtual laboratory in direct instruction, there are: the score of students is at least 75 (minimum completeness criteria of chemistry subject is 75), classical completeness is at least 80 %, and Normalized-gain (N-gain) is at least in the medium category. The results indicated that the mean of students’ pre-test and post-test were 42.5 and 81.33 respectively. There were 25 students who got scoe above or equal to 75 so that classical completeness achieved 83.33%. The average of Gain was 38.83 and N-gain was 0.69, so it was in the medium category. Eventually all the results of data analysis met the criteria of effectiveness mentioned above. In other words, virtual laboratory is effectively used in direct instruction to enhance students' achievement on colligative properties of solution topic.

Virtual Laboratory, Direct Instruction, Students’ Achievement
  • Ariani, N., & Haryanto, D. (2010). Pembelajaran Multimedia di Sekolah: Pedoman Pembelajaran Inspiratif, Konstruktif, dan Prospektif. Jakarta: Prestasi Pustakaraya. Arikunto, S. (2013). Dasar-dasar Evaluasi Pendidikan Edisi 2. Jakarta: Bumi Aksara. Arsyad, A. (2013). Media Pembelajaran. Jakarta: Raja Grafindo Persada. Chang, R. (2005). Kimia Dasar Edisi Ketiga Jilid 1. Jakarta: Erlangga. Gunhaart, A., & Srisawasdi, N. (2012). Effect of Integrated Compute-based Laboratory Environment On Students’ Physics Conceptual Learning of Sound Wave Properties. Procedia - Social and Behavioral Sciences, 46, 5750–5755. https://doi.org/10.1016/j.sbspro.2012.06.510 Hake, R. R. (1999). Analyzing Change/Gain Scores. Retrieved December 28, 2017, from http://www.physics.indiana.edu/~sdi/AnalyzingChange-Gain.pdf Harahap, N. M. (2010). Pengaruh Penggunaan Laboratorium Virtual Dibandingkan Dengan Laboratorium Riil dengan Pembelajaran Berbasis Masalah Terhadap Aktifitas dan Hasil Belajar Kimia Siswa SMA pada Pokok Bahasan Laju Reaksi. Program Pasca Sarjana Pendidikan Kimia Universitas Negeri Medan. Herga, N., & Dinevski, D. (2012). Virtual Laboratory in Chemistry - Experimental Study of Understanding, Reproduction and Application of Acquired Knowledge of Subject’s Chemical Content. Organizacija, 45(3), 108–116. https://doi.org/10.2478/v10051-012-0011-7 Herga, N. R., Grmek, M. I., & Dinevski, D. (2014). Virtual Laboratory As An Element Of Visualization When Teaching Chemical Contents In Science Class. TOJET: The Turkish Online Journal of Educational Technology, 13(4), 157–165. Joyce, B., Weil, M., & Calhoun, E. (2000). Models of Teaching (6th ed.). Boston: Allyn & Bacon. Kean, E. & Cathrine, M. (1985). Panduan Belajar Kimia Dasar. Jakarta: Gramedia. Keller, H. E., & Keller, E. E. (2005). Making Real Virtual Labs. The Science Education Review, 4(1), 2–11. Moore, D. (2006). Direct Instruction: Targeted Strategies for Student Success. Retrieved December 28, 2017, from http://ngl.cengage.com/assets/downloads/inside_pro0000000029/am_moore_direct_instr_seb21_0414a.pdf Munadi, Y. (2008). Media Pembelajaran. Jakarta: Gaung Persada Press. Nur, M. (2008). Model Pengajaran Langsung. Surabaya: Unesa University Press. Rusman. (2012). Belajar dan Pembelajaran Berbasis Komputer (Mengembangkan Profesionalisme Guru Abad 21). Bandung: Alfabeta. Salam, H., Setiawan, A., & Hamidah, I. (2010). Pembelajaran Berbasis Virtual Laboratory untuk Meningkatkan Penguasaan Konsep pada Materi Listrik Dinamis. In Proceedings of The 4th International Conference on Teacher Education; Join Conference UPI & UPSI. Bandung. Setiawan, W., Fitrajaya, E., & Mardiyanti, T. (2010). Penerapan Model Pengajaran Langsung (Direct Instruction) Untuk Meningkatkan Pemahaman Belajar Siswa Dalam Pembelajaran Rekayasa Perangkat Lunak (RPL). Jurnal Pendidikan Teknologi Informasi Dan Komunikasi (PTIK), 3(1), 7–10. Suhana, C. (2014). Konsep Strategi Pembelajaran. Bandung: Refika Aditama. Sullivan, R. (2012). Colligative Property. Retrieved December 29, 2015, from https://chemdemos.uoregon.edu/Topics/Colligative-Property Taşkin, N., & Kandemir, B. (2010). The affect of computer supported simulation applications on the academic achievements and attainments of the seventh grade students on teaching of science. Procedia - Social and Behavioral Sciences, 9, 1379–1384. https://doi.org/10.1016/j.sbspro.2010.12.338 Tatli, Z., & Ayas, A. (2010). Virtual Laboratory Applications in Chemistry Education. Procedia Social and Behavioral Sciences, 9, 938–942. Tatli, Z., & Ayas, A. (2012). Virtual Chemistry Laboratory: Effect of Constructivist Learning Environment. Turkish Online Journal of Distance Education, 13(1), 183–199. Tatli, Z., & Ayas, A. (2013). Effect of a Virtual Chemistry Laboratory on Students’ Achievement. Educational Technology & Society, 16(1), 159–170. Thorn, W. J. (1995). Points to Consider when Evaluating Interactive Multimedia. Retrieved December 28, 2017, from http://iteslj.org/Articles/Thorn-EvalueConsider.html Trianto. (2010). Mendesain Model Pembelajaran Inovatif-Progresif: Konsep, Landasan, dan Implementasinya pada Kurikulum Tingkat Satuan Pendidikan (KTSP). Jakarta: Kencana Prenada Media Group. Tuysuz, C. (2010). The Effect of Virtual Laboratory on Students’ Achievement and Attitude in Chemistry. International Online Journal of Educational Sciences, 2(1), 37–53.
Birincil Dil en
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Zulqifli Alqadri
Ülke: Indonesia


Bibtex @araştırma makalesi { ijaedu415413, journal = {International E-Journal of Advances in Education}, issn = {}, eissn = {2411-1821}, address = {OCERINT International Organization Center of Academic Research}, year = {2018}, volume = {4}, pages = {100 - 108}, doi = {10.18768/ijaedu.415413}, title = {USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT}, key = {cite}, author = {Alqadri, Zulqifli} }
APA Alqadri, Z . (2018). USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT. International E-Journal of Advances in Education, 4 (10), 100-108. DOI: 10.18768/ijaedu.415413
MLA Alqadri, Z . "USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT". International E-Journal of Advances in Education 4 (2018): 100-108 <http://ijaedu.ocerintjournals.org/issue/36556/415413>
Chicago Alqadri, Z . "USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT". International E-Journal of Advances in Education 4 (2018): 100-108
RIS TY - JOUR T1 - USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT AU - Zulqifli Alqadri Y1 - 2018 PY - 2018 N1 - doi: 10.18768/ijaedu.415413 DO - 10.18768/ijaedu.415413 T2 - International E-Journal of Advances in Education JF - Journal JO - JOR SP - 100 EP - 108 VL - 4 IS - 10 SN - -2411-1821 M3 - doi: 10.18768/ijaedu.415413 UR - http://dx.doi.org/10.18768/ijaedu.415413 Y2 - 2018 ER -
EndNote %0 International E-Journal of Advances in Education USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT %A Zulqifli Alqadri %T USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT %D 2018 %J International E-Journal of Advances in Education %P -2411-1821 %V 4 %N 10 %R doi: 10.18768/ijaedu.415413 %U 10.18768/ijaedu.415413
ISNAD Alqadri, Zulqifli . "USING VIRTUAL LABORATORY IN DIRECT INSTRUCTION TO ENHANCE STUDENTS’ ACHIEVEMENT". International E-Journal of Advances in Education 4 / 10 (Nisan 2018): 100-108. http://dx.doi.org/10.18768/ijaedu.415413