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ABSTRACT: Particle Swarm Optimization (PSO) is a commonly used optimization to solve many

problems. The PSO, which is developed for continuous optimization, is updated to solve discrete

problems and Discrete PSO (DPSO) is obtained in this study. With DPSO, the Traveling Salesman Problem

(TSP), which is well-known in the literature as a discrete problem, is solved. In order to improve the

results, the swap method, the shift method, and the symmetry method are added to DPSO. The symmetry

method is a new and successful method. The variations of the DPSO occurred according to the selected

method type (DPSO1 (swap method), DPSO2 (shift method), DPSO3 (swap and shift methods), DPSO4

(symmetry method), DPSO5 (swap, shift, and symmetry methods), DPSO6 (swap, shift, symmetry, and 2-

opt methods)). The effect of each method on the performance of the DPSO has been studied in detail. To

demonstrate the success of the variations of the DPSO, the results are additionally compared with many

well-known and new discrete algorithms in the literature. The results showed that the performance of

DPSO has improved with the symmetry method and it has achieved better results than the discrete

heuristic algorithms recently proposed in the literature.

Keywords: Swap, Shift, Symmetry, 2-OPT, Discrete Optimization, TSP

1. INTRODUCTION

In the literature, many researchers have either developed old methods or proposed new methods to

solve problems that are difficult to solve. In recent years, metaheuristic algorithms for such problems have

gained great importance due to their success. Metaheuristic algorithms are created by imitating events

that exist in nature. Most metaheuristic algorithms are created by imitating the feeding, hunting,

cohabitation, and similar behaviors of living creatures. Many metaheuristic algorithms have been

proposed in the literature. The oldest and most frequently used of these are Particle Swarm Optimization

(PSO) [1], Ant Colony Optimization (ACO) [2], and Artificial Bee Colony (ABC) [3]. These algorithms have

produced solutions for many different problems in the literature. Apart from these, there are different

heuristic algorithms that have been newly proposed in the literature in recent years. Some of these are as

follows: Snake Optimizer (SO) has created by snakes imitating their special mating behaviors [4], War

Strategy Optimization (WSO) has based on the strategic movements of army weapons during the war [5],

Red Fox Optimization (RFO) has created by imitating the hunting and feeding behavior of red foxes living

in nature on the snowy ground [6], etc. PSO is chosen for discrete optimization problems in this paper.

PSO is a heuristic algorithm based on mimicking bird and fish foraging behavior. PSO is simple to code,

has few parameters, and has a fast convergence rate [7]. That's why it has been used by many researchers

to solve engineering problems. It is used in a wide range of applications, including function optimization,

neural network training, fuzzy system control, classification, pattern recognition, signal processing, and

robot technology [7], [8], [9], [10], [11]. Gaing has proposed the discrete Binary PSO (BPSO) method in the

literature. Gaing has combined BPSO and Lambda iteration methods in the study [12]. For the feature

subset selection problem, Unler and Murat have created a modified discrete PSO algorithm [13]. Strasser

et al. present a PSO version that can optimize over discrete variables [14]. To solve the no-wait flow shop
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scheduling problem with both makespan and total flowtime criteria, a Discrete PSO (DPSO) algorithm is 

presented [15]. Izakian et al. propose a discrete PSO (DPSO) method for grid job scheduling [16].  

The optimization process is the process of obtaining the best value of a problem. In the optimization 

process, if the search space variables take continuous values, it is called continuous optimization, and if 

they take discrete values, it is called discrete optimization. Due to the nature of some problems, they take 

discrete values. The Traveling Salesman Problem (TSP) is one such problem. The TSP is a well-known 

multidisciplinary problem in operations research and computer science in which the goal is to find the 

shortest Hamiltonian cycle (circuit) in a network of cities (cost). The problem can be described as follows, 

given a set of cities (nodes) and the distances between them: A salesman should visit each of the remaining 

cities exactly once, starting and ending in a single depot city, to minimize the salesman's total journey 

distance (cost). Various scholars have investigated the TSP thoroughly, and as a result, several viable 

solutions (shift, swap, use the 2-opt algorithm, use the 3-opt algorithm, etc.) have been proposed [17], [18], 

[19], [20], [21]. Osaba et al. have proposed an improved discrete version of the WCA (dubbed the DWCA) 

to solve the Symmetric and Asymmetric TSPs [22]. The inclination feature in DWCA improves exploration 

and exploitation. Choong et al. have proposed a modified choice function for the TSP as a hyper-heuristic 

method [23]. Dahan et al. present a TSP adaptation of the Flying Ant Colony Optimization (FACO) 

algorithm [24]. For the TSP, Zhong et al. have proposed a hybrid discrete artificial bee colony algorithm 

with a threshold acceptance criterion [25]. Gao has suggested a new ACO algorithm [26].  A strategy of 

combining pairs of searching ants is used in this algorithm to diversify the solution space. Dong and Cai 

have introduced a new genetic algorithm for large-scale colored balanced TSPs [27]. Rokbani et al. have 

used FPA, PSO, and ant colony optimization heuristic algorithms as a hierarchical whole within the local 

search mechanism for TSP in 2021 [28]. Wu et al. have proposed a novel greedy genetic sparrow search 

algorithm based on a sine and cosine search strategy (GGSC-SSA) for TSP in 2021 [29]. Zhang and Han 

have proposed a discrete sparrow search algorithm (DSSA) with a global perturbation strategy to solve 

the TSP [30]. Huang et al. have proposed a discrete shuffled frog-leaping algorithm for TSPs. They have 

designed a new individual generation operator and four improved searching strategies to improve the 

algorithm performance [31]. Panwar and Deep have proposed a novel discrete GWO algorithm (D-GWO) 

to solve complex discrete TSPs [19]. Zhang and Yang have proposed a discrete cuckoo search algorithm 

based on the random walk and cluster analysis to solve the TSPs [32]. Zhang et al. have proposed a 

Discrete Mayfly Algorithm (DMA) for solving spherical asymmetric TSP. The DMA has had inver-over 

operator, a crossover operator, and a 3-opt operator [33].  

In this study, the PSO, which is developed for continuous optimization, is updated to solve discrete 

problems and Discrete PSO (DPSO) is obtained. With DPSO, TSP, which is well known in the literature as 

a discrete problem, is solved. In order to improve the results, the swap method, the shift method, the 

symmetry method, and 2-opt method are added to DPSO. The symmetry method is a newly developed 

and successful method [21]. The variations of the DPSO have occurred according to the selected method 

type (DPSO1 (swap method), DPSO2 (shift method), DPSO3 (swap and shift methods), DPSO4 (symmetry 

method), DPSO5 (swap, shift, and symmetry methods), DPSO6 (swap, shift, symmetry, and the 2-opt 

methods)). Sixteen low, medium, and large-sized TSP datasets are solved with the variations of the DPSO 

and the results are compared with each other. In order to demonstrate the success of the variations of the 

DPSO, the results are compared with many well-known and new discrete algorithms in the literature. 

1.1. The Primary Significant Contribution of the Research 

The significant distinctions between our study and previous research, as well as the major additions 

to the literature, are noted below. 

 

✓ DPSO is a discrete optimization method for discrete optimization problems. 

✓ DPSO produces adequate and similar TSP solutions, according to the findings of the 

experiments. 

✓ The DPSO has been applied to solve sixteen different TSPs taken from TSPLIB.    
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✓ The variations of the DPSO have occurred according to the selected method (DPSO1 

(swap method), DPSO2 (shift method), DPSO3 (swap and shift methods), DPSO4 

(symmetry method), DPSO5 (swap, shift, and symmetry methods), DPSO6 (swap, shift, 

symmetry, and 2-opt methods)). 

✓ In this study, the shift and symmetry method is applied for the first time for DPSO in the 

literature. 

✓ In this study, a population size (N) and the number of candidate solutions (CS) are 

examined in detail. Their effects on performance are shown. 

✓ According to the best (Min), the worst (Max), mean (Avg), standard deviation (Std), 

relative error, and CPU time, the TSP results show that the proposed algorithm is a viable 

and competitive optimizer. 

 

In this study, the materials and methods used in the paper (PSO, DPSO, TSP, the swap method, the 

shift method, the symmetry method, and the 2-opt method) are explained in Section 2, and the 

experimental results of the variations of the DPSO are given and discussed in Section 3. In Section 4 and 

Section 5, the results are explained and discussed. 

2. MATERIAL AND METHODS 

2.1. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) was modeled in 1995 and is widely used today [1]. PSO is modeled 

with inspiration from flocks of birds and fish. In the first stage, birds do not know where the food is and 

look for food in different places. Every bird is considered a particle. All particles work to find the optimum 

result or solutions that are close to the optimum result. Particles are placed randomly or regularly. There 

is information sharing between all particles. According to the information sharing, the best position is 

found and that movement moves in other particles. The optimum result can be reached easily and quickly 

by sharing information about the particles. 

In the PSO, each particle represents the solution-seeking agents of the swarm. It tries to get the best 

position by changing the positions of search agents in the search space depending on their local and global 

search capabilities. Each search agent updates its position (a) and velocity (vel) according to Equation 1 and 

Equation 2. Here, Best denotes the best search agent value and GBest denotes the global best search agent 

value. 

 

𝑣𝑒𝑙𝑖𝑗(𝑡 + 1) = 𝑤 ∗ 𝑣𝑒𝑙𝑖𝑗(𝑡) + 𝑘1𝑟𝑎𝑛𝑑1 (𝐵𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑎𝑖𝑗(𝑡)) + 𝑘2𝑟𝑎𝑛𝑑2(𝐺𝐵𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑎𝑖𝑗(𝑡))                          (1) 

 

𝑎𝑖𝑗(𝑡 + 1) = 𝑎𝑖𝑗(𝑡) + 𝑣𝑒𝑙𝑖𝑗(𝑡 + 1)                                                           (2) 

 

where, 𝑣𝑒𝑙𝑖𝑗(𝑡 + 1) denotes velocities of agent in range [−𝑉𝑒𝑙𝑚𝑎𝑥,𝑉𝑒𝑙𝑚𝑎𝑥] (i=agent name, j=dimension 

name, t= iteration number). 𝑎𝑖𝑗(𝑡 + 1) denotes positions of agent. w is the inertia weight. It is used to check 

the effect of previous speed history. 𝑘1 and 𝑘2 are the cognition learning factor and social learning factor. 

𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random numbers in range [0, 1] [1], [7]. The PSO's pseudo-code has been explained 

in Algorithm 1. 
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2.2. Discrete Particle Swarm Optimization (DPSO) 

PSO is modified to solve discrete optimization problems as follows: The particles are generated as 

random permutations during the initialization phase. In the PSO, each dimension of the particles holds 

the destination city information for the TSP. These values are obtained from the continuous search space 

obtained in PSO. Figure 1 shows the generation of the discrete search space from the continuous search 

space in PSO. For example, for a TSP with 10 cities, random variable values are generated with PSO in the 

range of [1] - [10]. These values are rounded to integer values to make them discrete. Since each city is 

visited once in TSP, the variable value should not repeat. Recurring variable values are detected with 

DPSO and the city name that is not included in the particle is added. 

 

 
Figure 1. Generation of discrete search space (for DPSO) from continuous search space in PSO 

 

The fitness value of each particle in the swarm is calculated.  The individuals in the DPSO population 

randomly generate the city route to be visited. The resulting random route does not always perform well. 

Therefore, updates should be made on this route. DPSO generates candidate solutions for each particle by 

various methods (the swap method, the shift method, the symmetry method, and the 2-opt method). If 

the fitness value of the produced candidate solution is better, the current individual is replaced with the 

candidate solution.  The swap method, the shift method, the symmetry method, and the 2-opt method are 

used for new candidate particles in the DPSO. The variations of the DPSO have occurred according to the 

selected method type (DPSO1 (swap method), DPSO2 (shift method), DPSO3 (swap and shift methods), 

DPSO4 (symmetry method), DPSO5 (swap, shift, and symmetry methods), DPSO6 (swap, shift, symmetry, 

and 2-opt methods)). The swap, shift, symmetry, and 2-opt methods are described in Section 2.3. The best 

solution is obtained after the termination criterion is met. The DPSO's pseudo-code is explained in 

Algorithm 2. Figure 2 shows the DPSO model. 
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Figure 2. The DPSO model 
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2.3. Swap, Shift, Symmetry, and 2-opt Methods  

2.3.1. Swap method 

The swap transformation is based on swapping two randomly selected cities in each particle [21]. 

Thus, a new candidate particle is created. Although the swap transform is a simple method, it has been 

used by many researchers in the literature to create new candidate particles. It enables DPSO to approach 

the optimum result. The swap method is shown in Figure 3. 

 

 
Figure 3. The swap method 

 

2.3.2. Shift method 

Each particle holds the city route information that will be visited by the vendor to calculate the fitness 

function of the problem. In order to generate candidate solutions in the Shift method, two different 

random cities are selected for each particle [21]. These two cities in the particle are swapped to create a 

new candidate particle, as in the swap method. During this change, the city location adjacent to the second 

randomly selected city is also included in the change. Shift transform causes position changes on the 

particle. In the swap method, two-city locations are changed, while in the shift method, three-city locations 

are changed. This creates a more efficient solution for finding the optimum route length. The shift method 

is shown in Figure 4 in detail. 
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Figure 4. The shift method 

 

2.3.3. Symmetry method 

The symmetry method is a method based on randomly changing city locations, as in the swap and 

shift methods [21]. In the symmetry method, there is more city location change than in the swap and shift 

methods. In the symmetry method, first of all, the city location is chosen randomly from 1-D in the form 

of two different groups. First of all, these two groups are subjected to a change of place among themselves, 

then the members of each group change their ranks among themselves. Thus, four different city locations 

are randomly changed. It also enhances the global search capability of the DPSO by placing groups of 

pairs at random locations in the search space. Relocation within the group also improves the local search 

capability of the DPSO in the search space. Thanks to this method, both the local and global search 

capability of DPSO is improved at the same time. While the swap method improves DPSO's global search 

capability, the shift method improves DPSO's local search capability. The success of a discrete heuristic 

algorithm depends on its ability to search both locally and globally. The symmetry method is shown in 

Figure 5 in detail. 

 

 
Figure 5. The symmetry method 
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2.3.4. 2-OPT method 

A local search algorithm begins with a candidate solution and progresses iteratively to a 

neighboring solution. It is often referred to as k-opt. In the literature, 2-opt and 3-opt forms are mostly 

used in discrete optimization problems. The 2-opt algorithm is most likely the simplest and most widely 

used algorithm for solving TSP problems. It was first developed by Croes in 1958. The 2-opt local search 

algorithm seeks two distinct neighbor solutions. To improve the quality of the solution, a 2-opt local search 

method is implemented on the best individual [38]. Working with local search logic, the algorithm makes 

improvements by removing two edges from the round and connecting the remaining parts differently. 

The solution is obtained after all possible changes have been made is called 2-optimal. It can be defined as 

deleting the two edges in the tour and connecting the tour divided into two parts differently, reducing 

costs. The 2-opt method is shown in Figure 6 and Figure 7 in detail. In this study, the 2-OPT algorithm is 

applied on the last route obtained after the methods applied in DPSO.  

 

 
Figure 6. The route before 2-Opt method 

 

 
Figure 7. The route after 2-Opt method 

 

2.4. Travelling Salesman Problem (TSP) 

TSP has a route consisting of different cities. A random city is selected from the cities and a tour is 

created by visiting each city once. TSP aims to create the shortest route and the shortest distance. Let there 

be D cities that a salesperson has to visit. The maximum number of routes to follow in all cities (D-1)!/2 

for D cities [21].  For example, there are 25 cities to visit, and the number of routes the algorithm will 
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review is considered to be ((25-1)!/2=24!/2). In this paper, we calculate the distance between cities m and n 

using Euclidean distance as follows: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚,𝑛 = √(𝑎𝑚 − 𝑎𝑛)2 + (𝑏𝑚 − 𝑏𝑛)2                                                                                                             (3) 

 

where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚,𝑛 is the distance between city m and city n.  𝑎𝑚 and  𝑎𝑛 are  a coordinates for city m 

and city n. 𝑏𝑚 and  𝑏𝑛 are  b coordinates for city m and city n. We use the func function to calculate the 

entire tour length as follows [21]: 

 

𝑓𝑢𝑛𝑐 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷,𝑖 + ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐,𝑐+1
𝑛−1
𝑐=1                                                                                                                (4) 

 

D denotes the total number of cities. The fundamental goal is to find the Hamiltonian path with the 

lowest cost on a weighted graph.  

2.5. TSP datasets used in the paper 

TSPLIB contains the problems that are utilized to generate experimental findings [39]. The majority of 

the problems in TSPLIB have been solved, and the best values have been reported. The city numbers are 

indicated by the numbers in the problem names. These optimum values are used to make comparisons. 

Euclidean problems are the coordinated kinds of these problems (EUC). Some studies in the literature 

calculate other types of problems (for example, geographical-GEO) as EUC, which leads to errors in 

comparisons. OLIVER30, EIL51, Eil76, EIL101, BERLIN52, ST70, PR76, KROA100, KROB100, KROC100, 

KROD100, KROE100, KROB150, TSP225, CH150, and A280 datasets selected from the TSPLIB library are 

used to solve the TSP problem with the DPSO algorithm. There are sixteen low, medium, and high 

dimensional data sets commonly used in TSP. The optimum values of these TSP datasets are given in 

Table 1. 

 

Table 1. The optimum values of these TSP datasets [20; 21]. 

ID TSP Name Dimension size 

(D=city size) 

Optimum value 

1 OLIVER30 30 423.74 

2 EIL51 51 428.87 

3 BERLIN52 52 7542 (7544.37) 

4 ST70 70 677.11 

5 EIL76 76 545.38 

6 PR76 76 108159.44 

7 KROA100 100 21282 (21285.44) 

8 KROB100 100 22141 

9 KROC100 100 20749 

10 KROD100 100 21294 

11 KROE100 100 22068 

12 EIL101 101 642.31 

13 KROB150 150 26130 

14 CH150 150 6532.10 

15 TSP225 225 3859 

16 A280 280 2586.77 
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3. RESULTS AND DISCUSSION 

The variations of the DPSO (DPSO1, DPSO2, DPSO3, DPSO4, DPSO5, and DPSO6) have occurred 

according to the selected method type (DPSO1 (swap method), DPSO2 (shift method), DPSO3 (swap and 

shift methods), DPSO4 (symmetry method), DPSO5 (swap, shift, and symmetry methods), and DPSO6 

(swap, shift, symmetry, 2 opt methods)). The success of each method on DPSO is tested separately. In the 

variations of the DPSO results, the best fitness values (Min), the average of the fitness values (Avg), 

maximum (Max) fitness values, the standard deviation of the fitness values (Std), and the mean CPU time 

are stored. Error (%) values are presented to measure the performances of the algorithms. The relative 

error (Error) is determined as follows using Eq. 5. The resulting answer (mean of 20 different runs) is 

referred to as Result, while the optimum value of the problem is referred to as Optimum. To make the 

comparisons easier, Error (%) values are used, and the best results are noted in boldface font type. During 

performance measurements, the experiment set is run 20 times. All experiments are run on a Windows 7 

using Intel(R) Core(TM) i5-2410M, 4 GB of RAM, and the codes are implemented in Matlab R2014a.  

 

𝐸𝑟𝑟𝑜𝑟 =
𝑅𝑒𝑠𝑢𝑙𝑡 − 𝑂𝑝𝑡𝑖𝑚𝑢𝑚 

𝑂𝑝𝑡𝑖𝑚𝑢𝑚
× 100 

(5) 

 

The application of the developed methods (swap, shift, and symmetry methods) in DPSO has been 

investigated by experimental studies.  

3.1. The Parameters of the DPSO 

For determining the optimum parameters for DPSO, the number of the particle (N) and the number 

of candidate solutions (CS) are analyzed. Ten different population size values (10, 20, 30, 40, 50, 60, 70, 80, 

90, 100, 200, and 300) are tested on the BERLIN52, EIL76, and KROA100 TSPs to see the effect of population 

size (N) on performance (for DPSO1). The function evaluations (MaxFEs) and the number of candidate 

solutions (CS) are used as 800000 and 5, respectively. Obtained results are shown in Table 2. According to 

the results, the population size does not have a significant effect on the results. In many studies in the 

literature, population size is taken as equal to the total number of cities [17], [21]. In this study, the 

population size amount is chosen as 100. 

Five different numbers of candidate solutions (CS) values (1, 5, 10, 15, and 20) are tested on the 

BERLIN52, EIL76, and KROA100 TSPs to see the effect of the number of candidate solutions (CS) on 

performance (for DPSO1).  The MaxFEs and population size (N) parameters are used as 800000, and 100, 

respectively. Obtained results are shown in Table 3. According to the results, as the number of candidate 

solutions (CS) increases, the performance increases. The number of candidate solutions is determined as 

the most appropriate value in this study. Experiments are carried out with the given parameter values. 

All parameters values use in the study are shown in Table 4.  
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Table 2. Population size (N) analyses of DPSO1. 

BERLIN52 

N Min Max Avg Std Mean 

Error(%) 

Mean CPU 

time 

10 8040.00 8133.00 8100.00 38.12 7.84 26.92 

20 8035.00 8133.00 8066.50 39.88 7.08 18.83 

30 8032.00 8133.00 8075.50 46.40 6.54 18.08 

40 8035.00 8133.00 8052.55 31.27 6.54 19.09 

50 8032.00 8133.00 8065.90 39.62 6.60 16.96 

60 8032.00 8133.00 8049.60 28.67 6.60 19.53 

70 8032.00 8059.00 8037.80 5.49 6.85 20.64 

80 8032.00 8066.00 8038.65 6.81 6.95 12.88 

90 8035.00 8040.00 8037.25 2.49 6.54 14.04 

100 8032.00 8040.00 8036.40 2.46 6.50 14.31 

200 8035.00 8076.00 8039.55 8.71 6.60 16.08 

300 7542.00 8063.00 8014.85 108.64 6.60 15.63 

EIL76 

N Min Max Avg Std Mean 

Error(%) 

Mean CPU 

time 

10 606.79 608.39 607.75 0.78 11.44 24.55 

20 606.79 606.79 606.79 0.00 11.26 15.47 

30 592.21 608.39 602.69 6.63 10.51 12.13 

40 606.79 608.39 607.27 0.73 11.35 10.74 

50 586.45 606.79 604.75 6.10 10.89 10.41 

60 592.21 606.79 602.57 6.45 10.49 10.52 

70 592.21 606.79 605.33 4.37 10.99 10.31 

80 592.21 606.79 605.33 4.37 10.99 10.28 

90 586.27 606.79 603.70 6.58 10.69 9.69 

100 592.21 606.790 603.19 5.66 10.60 10.43 

200 594.47 608.39 602.34 4.50 10.44 10.72 

300 598.01 608.39 605.39 3.63 11 11.25 

KROA100 

N Min Max Avg Std Mean 

Error(%) 

Mean CPU 

time 

10 22261.64 22643.48 22560.04 100.89 6.01 26.1 

20 22586.91 22864.92 22619.22 82.18 6.28 17.05 

30 22586.91 22601.93 22589.66 5.52 6.14 13.72 

40 22479.11 22652.94 22588.39 43.77 6.14 12.54 

50 22453.36 22634.11 22587.11 47.18 6.13 12.2 

60 22500.58 22861.06 22640.55 115.69 6.38 11.81 

70 22274.08 22746.07 22505.67 127.51 5.75 11.37 

80 22586.91 22712.84 22622.9 44.78 6.30 11.52 

90 22586.91 22923.99 22658.08 93.69 6.47 11.00 

100 22586.91 22984.92 22653.87 116.17 6.45 10.09 

200 22586.91 23114.58 22839.32 142.92 7.32 10.71 

300 22991.37 23349.15 23180.61 141.05 8.92 10.77 
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Table 3. The number of candidate solutions (CS) analyses of DPSO1. 

BERLIN52 

CS Min Max Avg Std Mean 

Error(%) 

Mean CPU 

time 

1 8035.00 8063.00 8038.70 6.11 6.54 16.82 

5 8035.00 8130.00 8050.60 26.08 6.54 20.57 

10 8032.00 8076.00 8038.40 8.97 7.08 21.09 

15 8032.00 8040.00 8036.55 2.99 6.54 16.21 

20 8035.00 8076.00 8040.60 12.01 6.54 15.25 

EIL76 

CS Min Max Avg Std Mean 

Error(%) 

Mean CPU 

time 

1 593.48 608.39 605.62 4.07 11.04 14.77 

5 592.21 606.79 604.27 5.12 10.80 10.65 

10 588.07 606.81 602.42 6.93 10.46 9.90 

15 593.74 607.60 603.29 5.56 10.62 10.18 

20 592.87 607.60 603.41 5.55 10.64 9.81 

KROA100 

CS Min Max Avg Std Mean 

Error(%) 

Mean CPU 

time 

1 22465.06 22992.03 22619.06 139.62 6.28 16.42 

5 22575.24 22918.82 22702.58 124.21 6.68 11.57 

10 22465.06 22794.71 22649.42 96.35 6.43 10.89 

15 22500.58 23391.24 22720.08 239.07 6.76 10.83 

20 22601.33 22850.81 22663.12 70.40 6.49 10.52 

 

Table 4. The sets of parameters of the variations of the DPSO. 

Parameters Values 

Number of particles 100 

MaxFEs 800000 

k1 (social constant) 0.2 

k2  (cognitive constant) 0.2 

w (inertia weight) 0.4 

𝑉𝑒𝑙𝑚𝑎𝑥 (maximum velocity) 0.8 

The number of candidate solutions 20 

 

3.2. The Comparison of the Variations of the DPSO  

The variations of the DPSO (DPSO1, DPSO2, DPSO3, DPSO4, DPSO5, and DPSO6) have occurred 

according to the selected method type (DPSO1 (swap method), DPSO2 (shift method), DPSO3 (swap and 

shift methods), DPSO4 (symmetry methods), DPSO5 (swap, shift, and symmetry methods), and DPSO6 

(swap, shift, symmetry, 2 opt methods)). The success of each method on DPSO has been tested separately. 

The performance improvement of each method over the result of DPSO is shown in detail. Parameter 

settings in Table 4 are used in the tests. Minimum result (Min), maximum result (Max), mean result (Avg), 

the standard deviation of results (Std), mean CPU time, and error rate results have been calculated for all 

DPSO variations. The results of the DPSO1, DPSO2, DPSO3, DPSO4, DPSO5, and DPSO6 are shown in 

Tables 5, 6, 7, 8, 9, and 10, respectively. Table 11 shows the comparison results for all DPSO variations (for 
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error rate (%)). Table 12 shows the comparison results for all DPSO variations (for mean CPU time).  Figure 

8 shows the convergence graph of mean error (%) for all methods. 

According to Table 11, the most successful DPSO variations are DPSO5 and DPSO6. While DPSO5 

achieves success in 9 of 16 TSP benchmarks, DPSO6 achieves successful results in 8 of 16 TSP benchmarks. 

The symmetry method provides a noticeable performance increase in the result. Swap, shift, and 

symmetry methods have improved DPSO to achieve optimum results. The 2-opt algorithm is a local search 

algorithm. DPSO6 is obtained as a result of running the 2-opt algorithm on the optimum route. It is 

noteworthy that the results of some TSP benchmarks have improved with the 2-opt algorithm (OLIVER30, 

KROB150, CH150, TSP225, A280, etc.). The results show that the application of many different methods to 

the result increases the result performance. 

 
Table 5. The performance analysis of DPSO1 on TSPs (swap method). 

ID TSP Name Min Max Avg Std Mean CPU time 

1 OLIVER30 425.27 435.07 433.04 3.89 15.08 

2 EIL51 470.58 485.64 482.80 4.47 24.30 

3 BERLIN52 8032.00 8077.00 8039.75 12.41 25.20 

4 ST70 721.68 728.39 724.04 1.82 21.85 

5 EIL76 592.21 606.81 604.46 4.73 18.08 

6 PR76 125407.46 127838.70 126536.58 683.54 15.59 

7 KROA100 22530.16 22716.90 22615.91 39.16 16.25 

8 KROB100 24071.69 25046.60 24554.27 280.58 16.90 

9 KROC100 23096.50 23190.43 23152.98 21.41 20.69 

10 KROD100 24410.01 24774.30 24659.44 90.02 23.65 

11 KROE100 23633.66 24084.27 23841.04 106.15 20.44 

12 EIL101 719.19 722.66 720.91 1.11 31.36 

13 KROB150 29808.01 30198.10 29952.17 96.08 18.69 

14 CH150 6923.70 6969.94 6943.05 11.84 17.43 

15 TSP225 4549.02 4598.76 4576.86 13.13 20.71 

16 A280 3028.03 3081.84 3063.75 14.21 23.02 

 

Table 6. The performance analysis of DPSO2 on TSPs (shift method). 

ID TSP Name Min Max Avg Std Mean CPU time 

1 OLIVER30 425.27 465.25 451.21 14.57 11.32 

2 EIL51 451.09 470.43 458.86 6.56 9.62 

3 BERLIN52 7542.00 7954.00 7857.35 123.74 9.68 

4 ST70 715.95 725.83 721.42 2.71 8.31 

5 EIL76 575.78 583.07 578.04 2.56 8.45 

6 PR76 119750.16 122922.17 120272.00 925.37 8.40 

7 KROA100 22664.62 23606.64 22969.30 289.26 8.95 

8 KROB100 24003.06 24577.97 24273.99 166.30 8.92 

9 KROC100 21866.45 22272.47 22030.39 112.44 9.07 

10 KROD100 23619.72 24578.48 24299.20 337.92 9.47 

11 KROE100 23493.46 23787.04 23626.89 83.83 9.13 

12 EIL101 706.88 711.55 707.98 1.21 9.11 

13 KROB150 29680.74 30082.38 29919.49 103.96 10.14 

14 CH150 6847.14 6921.75 6875.98 17.79 9.72 

15 TSP225 4386.69 4495.04 4452.49 24.30 11.39 

16 A280 3027.92 3054.05 3041.06 6.85 12.26 
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Table 7. The performance analysis of DPSO3 on TSPs (swap and shift methods). 

ID TSP Name Min Max Avg Std Mean CPU time 

1 OLIVER30 425.27 435.07 432.37 4.10 15.74 

2 EIL51 444.13 463.04 453.57 4.44 16.47 

3 BERLIN52 7542.00 7938.00 7879.60 81.35 16.63 

4 ST70 715.95 721.63 718.39 2.05 17.91 

5 EIL76 575.78 582.49 577.95 2.40 19.34 

6 PR76 117564.11 119986.96 119070.04 900.90 19.91 

7 KROA100 22332.50 22911.56 22542.78 170.54 20.52 

8 KROB100 23841.97 24370.47 24016.02 132.10 19.90 

9 KROC100 21840.52 22191.96 22012.09 108.50 27.38 

10 KROD100 23450.54 24577.59 24067.38 388.39 26.29 

11 KROE100 22970.94 23558.86 23181.96 156.66 33.16 

12 EIL101 702.77 707.29 705.71 1.30 23.87 

13 KROB150 29243.13 29480.60 29406.41 67.71 34.72 

14 CH150 6817.49 6873.62 6841.92 17.50 42.44 

15 TSP225 4383.50 4461.97 4423.66 20.90 49.68 

16 A280 2952.77 3030.44 2997.28 20.00 48.70 

 

Table 8. The performance analysis of DPSO4 on TSPs (symmetry methods). 

ID TSP Name Min Max Avg Std Mean CPU time 

1 OLIVER30 448.74 449.17 449.11 0.16 9.69 

2 EIL51 451.19 467.79 455.11 4.88 10.95 

3 BERLIN52 7679.00 7713.00 7694.20 13.83 8.74 

4 ST70 733.01 742.31 740.88 3.14 12.18 

5 EIL76 573.37 584.62 578.54 3.67 14.02 

6 PR76 114508.51 122436.35 116638.10 1959.10 10.50 

7 KROA100 23309.00 23629.08 23445.80 69.49 9.27 

8 KROB100 23713.21 24608.14 24113.70 202.28 10.51 

9 KROC100 22272.29 22736.49 22601.11 138.05 9.26 

10 KROD100 22632.36 23514.86 23031.71 258.70 9.06 

11 KROE100 23162.77 23366.24 23236.92 42.65 9.04 

12 EIL101 684.04 703.93 687.23 4.68 9.11 

13 KROB150 28250.12 29012.15 28437.25 215.15 12.88 

14 CH150 6865.71 6897.39 6871.80 10.42 16.39 

15 TSP225 4169.75 4312.46 4238.54 38.59 15.81 

16 A280 2850.60 2946.29 2899.01 26.92 15.59 

 



624  E. BAŞ, G. YILDIZDAN 

 

Table 9. The performance analysis of DPSO5 on TSPs (swap, shift, and symmetry methods). 

ID TSP Name Min Max Avg Std Mean CPU time 

1 OLIVER30 423.74 434.61 425.71 2.80 26.96 

2 EIL51 431.17 440.60 434.68 3.31 22.72 

3 BERLIN52 7542.00 7542.00 7542.00 0.00 22.67 

4 ST70 677.19 708.38 688.14 7.14 23.69 

5 EIL76 562.14 581.02 568.06 4.78 23.30 

6 PR76 109686.79 116262.26 112127.67 1734.91 26.84 

7 KROA100 21294.40 21910.66 21440.43 173.54 24.22 

8 KROB100 22323.35 23331.36 22696.48 213.23 30.72 

9 KROC100 21185.42 21904.06 21498.03 178.89 38.58 

10 KROD100 21712.39 23286.89 22183.73 325.28 33.13 

11 KROE100 22208.15 22614.14 22388.35 112.23 25.43 

12 EIL101 660.91 677.49 669.04 4.18 28.18 

13 KROB150 26628.34 27513.26 27021.26 223.87 33.99 

14 CH150 6565.05 6710.59 6635.86 44.40 41.96 

15 TSP225 4100.57 4218.32 4158.55 32.94 43.42 

16 A280 2763.18 2895.39 2836.20 34.08 42.83 

 

Table 10. The performance analysis of DPSO6 on TSPs (swap, shift, symmetry, and 2opt methods). 

ID TSP Name Min Max Avg Std Mean CPU time 

1 OLIVER30 423.74 425.27 424.66 0.75 24.04 

2 EIL51 431.17 443.47 436.76 4.13 26.92 

3 BERLIN52 7542.00 7542.00 7542.00 0.00 22.82 

4 ST70 686.62 699.77 688.62 2.66 25.27 

5 EIL76 559.33 573.39 565.85 4.07 26.25 

6 PR76 109352.49 116314.51 112372.04 1835.62 25.45 

7 KROA100 21294.40 21907.55 21476.41 216.52 31.30 

8 KROB100 22581.92 23061.09 22749.21 122.01 31.99 

9 KROC100 21234.64 21967.34 21449.68 179.66 31.03 

10 KROD100 21801.09 23474.44 22293.46 393.48 35.23 

11 KROE100 22161.11 22706.73 22438.09 120.84 32.82 

12 EIL101 657.28 679.33 669.39 4.38 34.09 

13 KROB150 26527.84 27536.51 26919.52 251.46 33.75 

14 CH150 6557.63 6697.65 6622.86 44.58 28.86 

15 TSP225 4001.42 4132.14 4057.05 38.00 35.31 

16 A280 2653.03 2833.05 2758.15 39.80 39.10 
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Table 11. The performance analysis of variations of the DPSO on TSPs (according to mean error (%)). 

ID TSP Name DPSO1 DPSO2 DPSO3 DPSO4 DPSO5 DPSO6 

1 OLIVER30 2.19 6.48 2.04 5.99 0.46 0.22 

2 EIL51 12.57 6.99 5.76 6.12 1.35 1.84 

3 BERLIN52 6.60 4.18 4.48 2.02 0.00 0.00 

4 ST70 6.93 6.54 6.10 9.42 1.63 1.70 

5 EIL76 10.83 5.99 5.97 6.08 4.16 3.75 

6 PR76 16.99 11.20 10.09 7.84 3.67 3.89 

7 KROA100 6.27 7.93 5.92 10.17 0.74 0.91 

8 KROB100 10.90 9.63 8.47 8.91 2.51 2.75 

9 KROC100 11.59 6.18 6.09 8.93 3.61 3.38 

10 KROD100 15.80 14.11 13.02 8.16 4.18 4.69 

11 KROE100 8.03 7.06 5.05 5.30 1.45 1.68 

12 EIL101 12.24 10.22 9.87 6.99 4.16 4.22 

13 KROB150 14.63 14.50 12.54 8.83 3.41 3.02 

14 CH150 6.29 5.26 4.74 5.20 1.59 1.39 

15 TSP225 18.60 15.38 14.63 9.84 7.76 5.13 

16 A280 18.44 17.56 15.87 12.07 9.64 6.63 

 

Table 12. The performance analysis of variations of the DPSO on TSPs (according to mean CPU time). 

ID TSP Name DPSO1 DPSO2 DPSO3 DPSO4 DPSO5 DPSO6 

1 OLIVER30 15.08 11.32 15.74 9.69 26.96 24.04 

2 EIL51 24.30 9.62 16.47 10.95 22.72 26.92 

3 BERLIN52 25.20 9.68 16.63 8.74 22.67 22.82 

4 ST70 21.85 8.31 17.91 12.18 23.69 25.27 

5 EIL76 18.08 8.45 19.34 14.02 23.30 26.25 

6 PR76 15.59 8.40 19.91 10.50 26.84 25.45 

7 KROA100 16.25 8.95 20.52 9.27 24.22 31.30 

8 KROB100 16.90 8.92 19.90 10.51 30.72 31.99 

9 KROC100 20.69 9.07 27.38 9.26 38.58 31.03 

10 KROD100 23.65 9.47 26.29 9.06 33.13 35.23 

11 KROE100 20.44 9.13 33.16 9.04 25.43 32.82 

12 EIL101 31.36 9.11 23.87 9.11 28.18 34.09 

13 KROB150 18.69 10.14 34.72 12.88 33.99 33.75 

14 CH150 17.43 9.72 42.44 16.39 41.96 28.86 

15 TSP225 20.71 11.39 49.68 15.81 43.42 35.31 

16 A280 23.02 12.26 48.70 15.59 42.83 39.10 
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Figure 8. Convergence graph of mean error  (%) for all methods. 

 

3.3. The comparison of the variations of the DPSO with DJAYA, SA, ACO, STA, and DTSA 

The first comparison is performed with Chunhua et al., Cinar et al., and Gunduz and Aslan [20], [21], 

[34]. In this study, the DPSO is compared with DJAYA, STA, SA, ACO, and DTSA on the BERLIN52 

problem. Comparison results of STA, SA, and ACO are directly taken from Chunhua et al., DTSA is 

directly taken from Cinar et al., and DJAYA is directly taken from Gunduz and Aslan. For a fair 

comparison, MaxFEs is set to 4000 for all methods. The parameter settings are shown in Table 13. 

Comparison results are shown in Table 14. According to the minimum results (Min), DPSO, DJAYA, and 

DTSA have reached the optimum results. According to the average results (Avg), DPSO has performed 

better than DTSA, DJAYA, STA, SA, and ACO algorithms. The reason for this success is due to the 

methods developed by DPSO on a randomly generated route. 

 
Table 13. The sets of parameters of DPSO, STA, SA, DTSA, DJAYA, and ACO. 

Parameters Population size MaxFEs Other parameters 

STA 20 4000 Temperature=50000; cooling rate=0.97 

SA 20 4000  

ACO 20 4000 α= 1, β = 5, ρ = 0.9 

DJAYA 20 4000  

DTSA 20 4000 NS=6; ST=0.5 

DPSO 20 4000 CS=20 

 

Table 14. The Comparison of DPSO, SA, ACO, STA, DTSA, and DJAYA on BERLIN52 TSP. 

TSP name Algorithm Min Max Avg Std 

BERLIN52 

SA 8186.40  9585.80 8983.80 380.10 

ACO 8240.40 9151.30 8777.60 267.11 

STA 7544.40 8630.50 8247.20 273.45 

DTSA 7542.00 7929.00 7689.17 108.40 

DJAYA 7542.00 7831.00 7668.35 112.50 

 DPSO5 7725.00 7905.00 7823.40 50.70 

 DPSO6 7542.00 7804.00 7637.55 95.89 
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3.4. The comparison of the variations of the DPSO with DJAYA, SA, DSTA0, DSTAI, DSTAII, and 

DTSA 

The second comparison is performed with Zhou et al., Cinar et al., and Gunduz and Aslan [20], [21], 

[35]. In this study, the DPSO is compared with DJAYA, SA, DSTA0, DSTAI, DSTAII, and DTSA on 

KROA100, KROB100, KROC100, KROD100, and KROE100 problems. Comparison results of SA, DSTA0, 

DSTAI, and DSTAII are directly taken from Zhou et al., DTSA is directly taken from Cinar et al., and 

DJAYA is directly taken from Gunduz and Aslan. MaxFEs is set to 90000 for all methods to ensure a fair 

comparison. Initial temperature and cooling rate are the algorithmic parameters of SA, and they are set to 

2000 and 0.97, respectively. The maximum iteration number for DSTA variations is set to 900 and the 

search enforcement is set to 100. Comparison results are shown in Table 15. According to the results, 

DSTAII and DPSO have performed better than other algorithms. 

3.5. The comparison of the variations of the DPSO with DJAYA, ACO, ABC, HA, and DTSA 

 

The other comparison is performed with Gündüz et al., Cinar et al., and Gunduz and Aslan [20], [21], 

[36]. In this study, the DPSO is compared with DJAYA, ACO, ABC, HA, and DTSA on EIL51, EIL76, 

EIL101, KROA100, OLIVER30, BERLIN52, ST70, PR76, CH150, and TSP225 problems. Comparison results 

of ACO, ABC, and HA are directly taken from Gündüz et al., DTSA is directly taken from Cinar et al., and 

DJAYA is directly taken from Gunduz and Aslan. MaxFEs is set to D×500 for all methods to ensure a fair 

comparison (D=the number of cities of the TSP). But, the population size and limit parameters of ABC are 

set to D and D×D×500, respectively. ACO's specific parameters are α = 1, β = 5, and ρ = 0.65. For ACO, the 

number of ants is set to D, and the maximum number of iterations is set to 500. HA stands for 50% ABC 

and 50% ACO, which implies the parameter values are the same, but the population sizes are half of D. 

Comparison results are shown in Table 16.  

According to the results, DPSO has achieved more successful results than other algorithms except HA. 

Out of 10 TSP benchmark datasets, DPSO has performed well in 4 (EIL51, PR76, KROA100, EIL101) of 

them. DJAYA has outperformed 2 (CH150 and TSP225) out of 10 TSP benchmark datasets. HA has been 

shown superior success in the 4 TSP benchmark dataset. ACO has been shown superior success in 1 TSP 

benchmark dataset. This has proven that DPSO has been developed and is an alternative discrete 

optimization algorithm in the literature. 
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Table 15. Comparison of DPSO with DJAYA, SA, DSTA0, DSTAI, DSTAII, and DTSA. 

TSP name Algorithm Avg Std Error(%) Rank 

KROA100 

SA 22635.00 778.72 6.36 5 

DSTA0 23213.00 906.11 9.07 7 

DSTAI 22835.00 715.85 7.30 6 

DSTAII 21767.00 221.64 2.28 4 

DTSA 21506.78 260.55 1.06 2 

DJAYA 21705.98 290.22 1.99 3 

DPSO6 21434.36 178.50 0.72 1 

KROB100 

SA 23657.00 445.78 6.85 5 

DSTA0 23794.00 517.05 7.47 7 

DSTAI 23734.00 507.38 7.19 6 

DSTAII 22880.00 302.14 3.34 1 

DTSA 23139.26 181.74 4.51 4 

DJAYA 22973.73 234.79 3.76 3 

DPSO6 23334.86 158.64 5.39 2 

KROC100 

SA 22223.00 522.20 7.10 6 

DSTA0 22877.00 709.87 10.26 7 

DSTAI 21891.00 536.88 5.50 5 

DSTAII 21378.00 246.34 3.03 1 

DTSA 21817.08 217.77 5.15 4 

DJAYA 21702.02 186.32 4.59 2 

DPSO6 21703.96 40.20 4.60 3 

KROD100 

SA 22911.00 483.01 7.59 5 

DSTA0 23043.00 565.80 8.21 7 

DSTAI 22665.00 592.53 6.44 3 

DSTAII 21991.00 315.32 3.27 1 

DTSA 22972.26 390.50 7.88 6 

DJAYA 22631.25 487.62 6.28 2 

DPSO6 22834.33 375.98 7.23 4 

KROE100 

SA 23125.00 389.42 4.79 5 

DSTA0 23738.00 450.82 7.57 7 

DSTAI 23371.00 678.69 5.90 6 

DSTAII 22637.00 166.82 2.58 4 

DTSA 22547.00 121.96 2.17 2 

DJAYA 22582.47 252.07 2.33 3 

DPSO6 22545.57 87.98 2.16 1 
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Table 16. The comparison of DPSO with DJAYA, ACO, ABC, HA, and DTSA. 
TSP name Algorithm Avg Std Error(%) Rank 

OLIVER30 

ACO 424.68  1.41 0.22 2 

ABC 462.55  12.47 9.16 6 

HA 423.74  0.00 0.00 1 

DTSA 428.50  4.21 1.12 5 

DJAYA 426.88  2.74 0.74 4 

DPSO6 425.28 0.05 0.36 3 

EIL51 

ACO 457.86  4.07 6.76 5 

ABC 457.86  4.07 6.76 5 

HA 443.39  5.25 3.39 3 

DTSA 443.93  4.04 3.51 4 

DJAYA 440.18  4.95 2.64 2 

DPSO6 436.11 3.18 1.69 1 

BERLIN52 

ACO 7659.31  38.70 1.52 5 

ABC 10390.26  439.69 37.72 6 

HA 7544.37  0.00 0.00 1 

DTSA 7545.83  21.00 0.02 3 

DJAYA 7580.30  80.60 0.48 4 

DPSO6 7542.50 1.50 0.01 2 

ST70 

ACO 709.16  8.27 4.73 5 

ABC 1230.49  41.79 81.73 6 

HA 7544.37  0.00 0.00 1 

DTSA 7545.83  21.00 0.02 2 

DJAYA 702.30  9.56 3.72 4 

DPSO6 700.53 9.14 3.46 3 

EIL76 

ACO 561.98  3.50 3.04 2 

ABC 931.44  24.86 70.78 6 

HA 557.98  4.10 2.31 1 

DTSA 578.58  3.93 6.09 5 

DJAYA 573.17  6.33 5.10 4 

DPSO6 572.98 2.60 5.06 3 

PR76 

ACO 116321.22  885.79 7.55 5 

ABC 205119.61  7379.16 89.65 6 

HA 115072.29  742.90 6.39 4 

DTSA 114930.03  1545.64 6.26 3 

DJAYA 113258.29  1711.93 4.71 2 

DPSO6 112937.44 681.34 4.42 1 

KROA100 

ACO 22880.12  235.18 7.49 5 

ABC 53840.03  2198.36 152.94 6 

HA 22435.31  231.34 5.40 4 

DTSA 21728.40  358.13 2.08 2 

DJAYA 21735.31  331.33 2.13 3 

DPSO6 21599.07 190.63 1.49 1 

EIL101 

ACO 693.42  6.80 7.96 5 

ABC 1315.95  35.28 104.88 6 

HA 683.39  6.56 6.40 3 

DTSA 689.91  4.47 7.41 4 

DJAYA 677.37  4.87 5.46 2 

DPSO6 677.34 0.58 5.45 1 

CH150 

ACO 6702.87  20.73 2.61 3 

ABC 21617.48  453.71 230.93 6 

HA 6677.12  19.30 2.22 2 

DTSA 6748.99  32.63 3.32 5 

DJAYA 6638.63  52.79 1.63 1 

DPSO6 6723.35 33.01 2.93 4 

TSP225 

ACO 4176.08  28.34 8.22 4 

ABC 17955.12  387.35 365.28 6 

HA 4157.85  26.27 7.74 3 

DTSA 4230.45  58.76 9.93 5 

DJAYA 4095.02  42.54 6.12 1 

DPSO6 4152.81 43.42 7.61 2 



630  E. BAŞ, G. YILDIZDAN 

 

 

3.6. The comparison of the variations of the DPSO with DJAYA, ACO, GA, BH, and DTSA 

The last comparison is performed with Hatamlou, Cinar et al., and Gunduz and Aslan [20], [21], [37]. 

In this study, the DPSO is compared with DJAYA, ACO, GA, BH, and DTSA on EIL51, EIL76, EIL101, 

BERLIN52, and ST70 problems. Comparison results of, ACO, GA, and BH are directly taken from 

Hatamlou, DTSA is directly taken from Cinar et al., and DJAYA is directly taken from Gunduz and Aslan. 

MaxFEs and population size (N) are set to 20000 and 100 for all methods to ensure a fair comparison. ST 

is set to 0.5 for DTSA. The ACO parameters are α = 1.5, β = 2, and ρ = 0.7. For ACO, the number of ants is 

set to 100, while the maximum number of iterations is set to 200. Comparison results are shown in Table 

17. According to the results, DPSO has been achieved more successful results than other heuristic 

algorithms in 4 of 5 different TSP datasets. DJAYA, on the other hand, has been showed superior success 

in 2 of 5 different TSP datasets. According to the results, DJAYA and DPSO outperform other heuristic 

algorithms. DPSO owes this outstanding success to symmetry and 2-opt methods developed for local 

search. 

Table 17. The comparison of DPSO with DJAYA, ACO, GA, BH, and DTSA. 

TSP name Algorithm Avg Std Rank 

EIL51 

ACO 461.0175  6.2974 6 

GA 453.4773  9.4157 3 

BH 458.9252  38.6365 5 

DTSA 456.5184  8.9247 4 

DJAYA 440.4394  3.1055 2 

DPSO6 439.11 3.23 1 

EIL76 

ACO 594.1442  40.2152 4 

GA 652.0593  122.0972 5 

BH 659.1021  152.1754 6 

DTSA 588.0623  5.7296 3 

DJAYA 574.4803  5.6710 1 

DPSO6 575.07 3.89 2 

EIL101 

ACO 763.9207  59.9684 4 

GA 838.8307 9.9642 5 

BH 897.3813 210.1446 6 

DTSA 689.8384 7.2994 3 

DJAYA 686.8843 6.0664 2 

DPSO6 685.92 6.23 1 

BERLIN52 

ACO 8522.9017  1152.2000 4 

GA 9288.4483  1301.2108 5 

BH 8455.8304  508.9871 3 

DTSA 7761.6000  62.8594 2 

DJAYA 7627.0000  120.3869 1 

DPSO6 7627.0000 103.89 1 

ST70 

ACO 757.7540  59.6079 4 

GA 1158.8458  52.1734 6 

BH 797.5745  125.2272 5 

DTSA 710.4037  2.7956 3 

DJAYA 707.2151  15.3049 2 

DPSO6 707.08 1.84 1 
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3.7. Discussion 

The PSO has been updated for discrete optimization problems, and the results of DPSO have been 

examined in this study on TSPs of 16 different sizes. Four different methods have been proposed to 

improve the performance of DPSO (swap, shift, symmetry, and 2-opt methods). Various DPSO variations 

are obtained according to the addition of each method to DPSO. Thus, the success of each method on 

DPSO is examined in detail. The symmetry method provides a noticeable performance increase in the 

result. Swap, shift, and symmetry methods have improved DPSO to achieve optimum results. DPSO6 is 

obtained as a result of running the 2-opt algorithm on the optimum route. When DPSO is compared with 

the literature, it is a remarkable success. Thus, the success of the proposed methods for DPSO has been 

proven. 

4. CONCLUSIONS 

PSO is a heuristic algorithm based on swarm intelligence developed to solve continuous optimization 

problems. Due to its success in solving continuous optimization problems, it has often been preferred by 

many researchers in the literature for solving real-world problems. But real-world problems do not always 

consist of continuous problems. Sometimes real-world problems are problems involving independent 

variables. Such problems are called discrete optimization problems. TSP is a discrete optimization 

problem that is frequently used in the literature to measure the success of discrete optimization 

algorithms. In this study, a Discrete PSO (DPSO) is proposed. In order to increase the success of DPSO, 

new methods have been added in the new candidate particle generation stage. These methods are swap, 

shift, symmetry, and 2-OPT methods. Although the swap, shift, and symmetry methods are frequently 

used in the literature, they are used for the first time in DPSO. The symmetry method is a new and 

successful method. The variations of the DPSO have occurred according to the selected method type 

(DPSO1 (swap method), DPSO2 (shift method), DPSO3 (swap and shift methods), DPSO4 (symmetry 

method), DPSO5 (swap, shift, and symmetry methods), DPSO6 (swap, shift, symmetry, and 2-opt 

methods)). The performance increase of each method on DPSO is examined in detail. Thus, the 

contribution of each method to the performance of the DPSO is shown. The performance of DPSO is 

studied on sixteen different TSP datasets with low and high scales. The performance of DPSO is compared 

with the performances of DJAYA, DTSA, SA, DSTA0, DSTAI, DSTAII, ACO, ABC, HA, ACO, GA, and BH 

which are recently proposed new discrete optimization algorithms in the literature. Since DPSO is a well-

established heuristic algorithm in the literature, it has competed with the newly proposed discrete 

algorithms. DPSO has excelled in many TSPs. DPSO's success is thanks to the swap, shift, and symmetry 

methods that it has developed the ability to search locally and globally. In future studies, the success of 

DPSO is thought to be demonstrated in different discrete optimization problems such as the knapsack 

problem and discrete real-world problems.  
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