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Abstract  

Graphs are discrete structures composed of vertices and edges connecting these vertices. Graphs are used 
in almost all disciplines as abstract models for the representation and study of a wide range of relations and 
processes in physical, biological, social and information systems. Many practical problems in a variety of 
areas like computer and communication networks, social networks, transportation networks, cellular 
networks, linguistics, chemistry, physics, biology can be represented and studied by graphs.  

Real-world entities - like molecules, persons, groups, roles, species, computing and communication devices, 
terms - correspond to vertices. Relations among such entities - like preference, domination, independence, 
interference, proximity, constraints - imply the existence of edges between corresponding vertices. Thus, 
focusing on the abstract graph model instead of studying each particular instance as a different real-world 
problem reveals common underlying properties, deficiencies and principles. In this way, efficient approaches 
to real-world problems emerge from the theoretical study of their abstractions. 

In this work, we use graph coloring to propose efficient solutions to scheduling problems arising in higher 
education. The objective of the graph coloring problem is to assign colors to graph vertices so that adjacent 
vertices, i.e., vertices connected by an edge, receive different colors. We consider as the objective of 
scheduling problems in higher education, like lecture and exam scheduling, to assign time/day slots to 
teaching or examination activities so that the maximum number of students can attend them with the fewest 
possible conflicts.  

Our main motivation has been the crucial issue of efficient course and exam schedules often arising in 
departments of the University of Patras, Greece. Students usually have to attend lectures or exams 
scheduled in overlapping or simultaneous time slots. However, course and exam schedules are created 
based on heuristic approaches which may work well on average but certainly leave several room for 
improvement.  

What if a graph-theoretic approach were used? Courses correspond to vertices of a graph and there is an 
edge between two vertices if and only if an appropriately selected minimum population of students attends 
corresponding courses (lectures/exams). Then, a coloring of such an underlying graph suggests an 
appropriate schedule for teaching/examination activities.  

Using a simple coloring algorithm and the MATLAB programming environment, we have designed and 
developed a scheduling application which receives as input courses and constraints and outputs an efficient 
lecture/examination schedule. Experimental evaluation suggests that our application works well in practice. 
Ongoing work focuses on the use of a more involved coloring algorithm for addressing more complex course 
scheduling instances while minimizing required time resources. 
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1 INTRODUCTION 

Our everyday life is built upon situations involving entities joined together by some sort of relation. For 
example, pairs of people are joined by some type of relationship, colleagues work together on projects, cities 
are joined by highways, metro/train stations are joined by railway lines, data centers are joined via 
communication links, courses are scheduled in weekly timetables and so on. Furthermore, relations among 
entities are also observed in more specialized contexts, like for example bonds among atoms and elements 
in chemistry, bonds among RNA chains and proteins in genetics, competition among species or migration 
paths in biology, interconnection of electronic devices in computer networks, association of individuals and 
groups within social structures and many more (Bondy, Murty, 1982, Xu, 2003).   

Focusing on the fact that entities are related no matter what the particular type of relation is leads to a 
natural abstraction for representing these relations. We draw a diagram composed of points and lines where 
points represent entities and a line between two points indicates some sort of relation between the 
corresponding entities. In a formal mathematical context, these diagram structures are called graphs. 
Typically, a graph, G, is defined as an ordered pair (V,E), where V is a nonempty set of vertices, i.e., points, 
and E is a set of edges, i.e., lines, joining together vertices of V according to some incidence function f which 
associates each edge of E with an unsorted pair of not necessarily distinct vertices of V. Graphs are widely 
used as models in almost all scientific fields, both theoretical and applied. Graph theory, i.e., the study of 
structural properties of graphs, has emerged to a branch of mathematics providing deep understanding and 
helpful insight not only for scientific research questions but also for a wide range of real-world problems.  

There exists a long list of graph problems whose study has either revealed important limitations and 
constraints or has suggested efficient solutions to many real-world equivalents (Roberts, 1978, Bondy, 
Murty, 1982, Xu, 2003). Real-world problems like for example phasing traffic lights, one-way street 
assignments, frequency spectrum management in wireless cellular networks, efficient communication, 
transportation, construction network design are immediately related to graph problems like shortest path, 
Eulerian chains and paths, independent set, minimum spanning tree etc. In this way, algorithms and 
methods devised to address graph-theoretical problems can also be exploited to provide solutions to their 
real counterparts. 

A controversial task we frequently come across in an academic environment is the scheduling of lectures 
and exams under constraints related to student participation. Students usually have to attend lectures or 
exams scheduled in overlapping or simultaneous time slots. Despite the fact that any type of scheduling is 
an inherently hard problem, it has been observed that proposed schedules are rather based on heuristic 
approaches and usually fail to facilitate and encourage student participation. Motivated by this situation, in 
this work, we exploit the interplay between two important and well-studied graph-theoretical problems, 
namely graph coloring and scheduling, and present a MATLAB application which computes efficient lecture 
and examination timetables for higher education departments.  

In particular, in our setting, vertices of the graph correspond to courses and there exists an edge between 
two vertices as long as corresponding courses cannot be scheduled for the same or overlapping time 
intervals due to student participation constraints. If we imagine different time intervals as different colors, 
then our course scheduling problem becomes equivalent to a graph (vertex) coloring problem in the 
underlying graph. In short, the objective of the vertex coloring problems is to color the vertices of a graph so 
that adjacent vertices, i.e., vertices joined by an edge, are assigned different colors. Therefore, a solution to 
this instance of vertex coloring forms a solution to our course scheduling problem. Following this approach 
we start from a list of courses and a list of participation constraints and we first create a graph G. Then, using 
a simple coloring algorithm we obtain a proper coloring of G, which we subsequently transform into a course 
schedule. Our experimental evaluation so far shows that even a simple coloring algorithm generates course 
schedules which are efficient in practice.  

The rest of the paper is structured as follows: in Section 2 we present and analyze the coloring algorithm 
used for addressing our scheduling instance. In Section 3, we provide design and implementation details 
concerning our application for lecture and exam scheduling. We conclude and present future plans in 
Section 4. 

2 GRAPH COLORING ALGORITHM FOR SCHEDULING 

2.1 Graph coloring  

A coloring – or vertex coloring - of a simple graph is the assignment of a color to each graph vertex so that 
adjacent vertices receive different colors. Such a coloring is also called a proper coloring of the graph. A 
graph can be colored by assigning each of its vertices a different color. The corresponding optimization 
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problem asks to find a vertex coloring with minimum number of colors. 

For most graphs a coloring can be found that uses fewer colors than the number of vertices in the graph. 
The chromatic number of G, denoted by χ(G), is the minimum number of colors required to color all the 
vertices of G. In the left part of Fig. 1 a properly colored hexagon graph is depicted. Indeed, all neighboring 
vertices are assigned different colors. In the right part of Fig. 1, a coloring of this graph with the minimum 
number of colors is shown. Hexagon graphs are 3-colorable and therefore their chromatic number is 3.  

 

Fig. 1: Colorings of a hexagon graph, H. 

Assigning distinct colors to distinct vertices always yields a proper coloring, so for every graph G=(V,E), with 

|V|=n, it holds that 1 ≤ χ ( G ) ≤ n. The degree of a vertex v  V is the number of edges of G incident to v. 
The chromatic number of a graph is closely related to its maximum degree, denoted Δ(G), which is the 
maximum degree of all vertices in a given graph. In particular, the chromatic number of a graph is at most 
the maximum vertex degree, i.e., χ(G) ≤ Δ(G), unless the graph is complete or an odd cycle, in which case 
Δ(G)+1 colors are required (Brooks, 1941, Lovász, 1975). 

Furthermore, it holds that K(G) ≤ χ(G), where K(G) is the size of the maximum clique in G, i.e., the size of the 
maximum set of mutually adjacent vertices in G. For example, in the hexagon graph H of Fig. 1, the 
maximum clique is a triangle, i.e., it is composed of 3 mutually adjacent vertices e.g., the middle red vertex, 
the upper-left green vertex and the upper-right blue vertex as depicted in Fig. 2. So, Κ(H) = 3 and, therefore, 
χ(H) ≥ 3, which implies that H can be colored with at least 3 colors. As another example, in the complete 
bipartite graph K3,2 the size of the maximum clique, is K(K3,2) = 2 which implies a lower bound of 2 for its 
chromatic number (see right part of Fig. 2).  

 

 

Fig. 2: Maximum cliques in a hexagon graph H (left) and the complete bipartite graph K3,2; their size imply a 
lower bound on the chromatic number of these graphs.  

Another crucial number bounding the chromatic number of a graph G is the number of maximum 
independent sets, denoted as I(G), in which vertices of G can be partitioned. An independent set in a graph 
G=(V,E) is a collection of mutually non-adjacent vertices of V. It can be easily seen that the notion of an 
independent set is complementary to the notion of a clique; vertices in an independent set are mutually non-
adjacent while vertices in a clique are mutually adjacent. Thus, vertices of an independent set in a graph can 
be assigned the same color in a proper coloring if this graph. Therefore, it holds that  I(G) ≤ χ(G), where the 
quantity I(G) denotes the number of the maximum independent sets in G.  

 

Fig. 3: The number of maximum independent sets in a hexagon graph H (left) and the complete bipartite 
graph K3,2 (right) implies a lower bound on chromatic number of these graphs.  

For example, as depicted in Fig. 3, vertices of the hexagon graph H can be partitioned into 3 independent 
sets which define 3 color classes containing mutually non-adjacent vertices assigned the same color, i.e., 
green, blue and red. So, I(H) = 3 and, therefore, χ(H) ≥ 3, which implies that H can be colored with at least 3 
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colors. As another example, vertices of the complete bipartite graph K3,2 can be partitioned into 2 
independent sets. Therefore, I(K3,2) = 2 which implies a lower bound of 2 for its chromatic number (see right 
part of Fig. 3).  

However, determining the chromatic number of a graph is a hard problem (an NP-Complete problem) in the 
sense that the best available approach is to find all possible colorings and then select one which uses the 
smallest number of colors (Garey and Johnson, 1979, Karp, 1972). The best known algorithms for finding the 
chromatic number of a graph have exponential worst-case time complexity in the number of vertices of the 
graph. Even the problem of finding an approximation to the chromatic number of a graph is difficult. It has 
been shown that if there were an algorithm with polynomial worst-case time complexity that could 
approximate the chromatic number of a graph up to a factor of 2, then there would also exist an algorithm 
with polynomial worst-case time complexity for finding the chromatic number of the graph (Pardalos, 
Mavridou, Xue, 1998, Feige, Kilian, 998, Håstad, 1999, Khot, 2001, Zuckerman, 2007, Lewis, 2015). 

Graph coloring has been used to model and address several real world problems. In the following, we 
indicatively mention a short list of major such problems. Map coloring refers to the coloring of geographical 
maps so that adjacent regions receive different colors. It has been proved that four colors are sufficient to 
color any map (Kempe, 1879, Appel and Haken, 1977, 1989). In the area of compiler optimization, register 
allocation is the process of assigning a large number of target program variables onto a small number of 
CPU registers. This problem has also been addressed as a graph coloring problem (Chaitin, 1982). The 
frequency allocation problem in mobile and wireless networks turns out to be a graph coloring problem. The 
objective of frequency allocation is the assignment of frequencies to all users of a cellular network, so that 
users in the same or adjacent regions are assigned distinct frequencies avoiding radio interference and the 
number of frequencies used in minimized. Corresponding frequencies to colors and users who wish to 
communicate to vertices of an appropriately defined graph, every instance of the frequency allocation 
problem is equivalent to an instance of graph coloring (Narayanan, Shende, 2001, Khanna, Kumaran, 1998).  
Graph coloring and its generalizations have proved to be useful tools in modelling a wide range of 
scheduling and assignment problems (Marx, 2004).   

2.2 Scheduling and graph coloring 

Assume that a set of interfering jobs must be scheduled. This implies that it has to be determined when each 
job is executed. Let G be the conflict graph of the jobs. Vertices of the conflict graph correspond to jobs and 
there is an edge between two vertices if the corresponding jobs cannot be executed simultaneously. Each 
job requires a unit time slot. Time slots correspond to colors. Then there is a one-to-one correspondence 
between the feasible job schedules and the colorings of the graph. That is, vertex v receives color i if and 
only if the corresponding job is executed in time slot i. Clearly, the graph admits a k-coloring if and only if 
jobs can be executed in k time slots in such a way that interfering jobs are not executed simultaneously. 
Therefore the chromatic number of the graph equals the minimum makespan of the scheduling problem, i.e., 
the minimum time required to finish the jobs.  

Determining the chromatic number of a graph is a hard problem, hence we cannot expect to solve the 
scheduling problem efficiently for large graphs. However, graphs arising in several practical scheduling 
instances have a special structure that makes coloring easier. Furthermore, even if no optimal coloring 
algorithm can be devised, it may well be the case that an approximation algorithm - which is certainly not 
optimal, but offers a performance guarantee - produces good, acceptable schedules.   

We consider the following scheduling problem. We are given a list C of courses c i  C, together with pairwise 
predefined thresholds, T(ci, cj), reflecting the least possible number of students who should be able to attend 
both courses ci and cj, either in terms of lectures or in terms of exams. Consequently, any number of 
students exceeding T(ci, cj) implies that courses ci and cj cannot be scheduled for the same or overlapping 
time slots. For example, assuming that T(cA, cB)=3, if there exist 10 students who wish to attend both 
courses A and B, then these courses must be scheduled for non-overlapping time slots; however, the case 
where only 2 (<T(cA, cB)=3) students wish to attend both courses A and B does not impose a constraint for 
courses A and B to be scheduled for the same or overlapping time slots. We, then, address the question: 
how courses in list C can be scheduled so that all conditions imposed by T(ci, cj) are met? 

This scheduling problem just stated can be then solved using a graph model where vertices represent 
courses and there exists an edge between two vertices if there are a minimum common number of students 
in the courses they represent. Each time slot is represented by a different color. A course scheduling 
corresponds to a coloring of the associated graph. 

Involved graph coloring algorithms and several applications of graph coloring to problems involving 
scheduling have appeared in the relevant literature. But, since no efficient algorithm is known for graph 
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coloring, this approach has not yielded efficient scheduling algorithms. 

However, in this work, our main objective has been to showcase that even a simple graph-theoretic 
approach can give significant insight and suggest efficient practical solutions to complex problems arising in 
academic routine. This is why we decided to use a rather simple coloring algorithm for addressing our 
scheduling instance.  

Given an instance of a course scheduling problem, we produce a graph G=(V, E) where courses correspond 
to graph vertices and there is an edge between two vertices if corresponding courses must be scheduled for 
non-overlapping time slots. Available time slots correspond to colors represented by non-zero, positive 
integers, i.e., 1, 2, 3,… In this setting, a coloring of graph G suggests a course schedule.  

Our algorithm works as follows. Initially, graph vertices v1, v2, v3,… , vn are sorted in decreasing order 
according to their degree so that deg(v1) ≥ deg(v2) ≥ ... ≥ deg(vn) producing a sorted list L. Then, color 1 is 
assigned to vertex v1 and also to all subsequent vertices in L (if exist) which are not adjacent to v1 and not 
adjacent to vertices which have already received color 1. Then color 2 is assigned to the first vertex in L not 
already colored. Successively color 2 is assigned to uncolored vertices not adjacent to vertices already 
assigned color 2. The algorithm proceeds in the same fashion assigning color 3 to still uncolored vertices 
that meet adjacency constraints and so on. The process terminates when there are not uncolored vertices.  

The algorithm can use up to n colors, in case of complete graphs of n vertices. Practically, in our case, this 
upper bound cannot be reached since actual scheduling requirements never result in complete graphs due 
to curriculum constraints. In practice, the number of colors used equals Δ+1, where Δ is the maximum 
degree of the underlying graph, which usually does not exceed a small constant. As far as the running time 
of the algorithm is concerned, the theoretical upper bound is O(n

3
) since for each of the n available colors, at 

most n vertices must be checked for adjacency constraints and each such check may require a further check 
of at most n edges. However, in practice, within our particular context, the algorithm performs significantly 
better in terms of worst-case running time complexity.  

3 COURSE AND EXAM SCHEDULING APPLICATION 

We implemented our scheduling application using the MATLAB programming environment. In particular we 
used MATLAB version R2010a running on a Windows 10 pro machine with an INTEL(R) i7-4770 CPU (3.4 
GHz) and a RAM of 8GB.  

MATLAB is a numerical computing environment and fourth-generation programming language which allows 
matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user 
interfaces, and interfacing with programs written in other languages, including C, C++, Java, and Fortran. 
Although it was intended primarily for numerical computing, it also allows symbolic computing, graphical 
multi-domain simulation and model-based design for dynamic and embedded systems. It has been widely 
used in academia and industry by users coming from various backgrounds of engineering, science and 
economics. MATLAB was first adopted by researchers and practitioners in control engineering, and quickly 
spread to many other domains. It is now also used in education, in particular the teaching of linear algebra 
and numerical analysis, and is very popular amongst scientists involved in image processing [Moler, 2004].  

Our scheduling application receives as input an Excel file whose columns correspond to courses to be 
scheduled. Within each column, raw values indicate identification numbers of students registered for the 
particular course. Then a positive integer threshold, T, is set whose value indicates the minimum number of 
students that must be registered for a pair of courses, so that these two courses cannot be scheduled for the 
same time interval. For example, setting T=2 means that if at least 2 students are found in the registration list 
of two courses, say c1 and c2, then c1 and c2 must be scheduled for different time slots.  

Then, using the .xls input file and the threshold value, our application first determines all pairs of courses that 
cannot be scheduled for the same time interval. This information is then mapped on a graph G=(V,E) as 
follows. Courses correspond to graph vertices and there is an edge between two vertices if their 
corresponding courses cannot be scheduled for the same time interval. G is, thus, the conflict graph of our 
input instance. Furthermore, a coloring of G would directly imply a feasible course schedule: different colors 
indicate different time slots and vertices of the same color correspond to courses that can be scheduled for 
the same time slot while vertices of different color correspond to courses that cannot be scheduled for the 
same time slot.  

We represent graph G via its adjacency matrix, i.e., a square |V| × |V| matrix A such that its element Aij is 1 
when there is an edge connecting vertex i to vertex j, and 0 otherwise (Cormen, Leiserson, Rivest, Stein, 
2001). Note that elements in the diagonal of A are all 0, since in simple graphs loops, i.e., edges from a 
vertex to itself, are not allowed. Then, we use the simple coloring algorithm of Section 2.2 for coloring G.  
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Our application returns the number of colors used for the coloring G – which indicates the total 3-hour time 
slots required - together with suggested schedules in tabular form for the courses provided as part of the 
input.  

3.1 The case of a 2015 fall semester course schedule 

In the following, we present a show case based on an actual sample of courses and corresponding 
registration lists from the 2015 fall semester at the department of Cultural Heritage Management and New 
Technologies, University of Patras, Greece.  

The input .xls file contains 27 columns, one for each course of the fall semester curriculum. Course 
registration lists contain on average 93 students. Information included in the .xls file provided as input can be 
visualized as depicted in Fig. 1. 

 

Fig. 1: visualization of the input .xls file containing course registration lists 

The required schedule must cover at most 5 working days (from Monday to Friday) for a maximum of 12 
hours per day (from 9.00 to 21.00). Each lecture requires a 3-hour time interval. When examining course 
registration pairwise, increased number of overlaps implies courses of the same year of studies. This means 
that in the conflict graph corresponding to our input instance, we expect to see compact subgraphs which are 
almost cliques containing nodes that represent courses of the same year of studies. Given that attendance is 
not obligatory, we tried several threshold values.  

Results returned by our application are summarized below. Fig. 2 shows the number of necessary working 
days computed by our coloring algorithm as a function of the threshold value. As expected, increasing the 
threshold value allows more courses to be scheduled simultaneously, thus reducing makes pan. Notice that 
for threshold values greater or equal to 6, feasible schedules, i.e., schedules requiring at most 5 working 
days, are produced. A threshold value between 6 and 15 is considered to be acceptable for real attendance 
requirements.   

 

Fig. 2: required working days computed by our coloring algorithm assuming different threshold values 
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Assignment of courses to time slots for integer threshold values in the range [6,15] are depicted in Fig. 3. 
Time slots correspond to different colors while courses scheduled for the same time slot correspond to non-
neighboring graph vertices which received the same color by the coloring algorithm.  

 

Fig. 3: assignment of courses to time slots for integer threshold values in the range [6,15] 

Based on the computed assignment of courses to time slots, the application also returns a suggested weekly 
schedule in tabular format for the set of courses provided as part of the input. Suggested weekly schedules 
are automatically extracted to xls files which can be saved and further modified (manually). In Fig. 4, weekly 
schedules for the 27-course curriculum are depicted for threshold values equal to 6, 7, and 8.   

 

Fig. 4: weekly schedules for the 27-course curriculum are depicted for threshold values equal to 6, 7, and 8 

We have created a template for presenting computed schedules. Column titles (e.g., Time slot, Course ID) 
as well as time intervals indicating different time slots can be easily modified. For demonstrating purposes, 
we have used numbers instead of titles for identifying courses; this information is directly received from the 
xls file provided as input and, therefore, can be easily modified to meet particular schedule presentation 
requirements.  

Regarding the response time of our application, it seems that in practice, given a usually rather short 
curriculum, it performs pretty well. In Fig. 5, response times are depicted for the input list of 27 courses and 
threshold values between 0 and 15. The blue line shows the time required by our application for computing a 
schedule and presenting it in a tabular form. This process includes (a) using the input xls file for constructing 
a corresponding conflict graph (via its adjacency matrix), (b) coloring the induced graph, (c) corresponding 
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colors to time slots and (d) creating a new xls output file containing the computed schedule in the form of a 
timetable. The pink line shows the time required just for the main computation of the schedule, i.e., points (a) 
and (b) of the previously outlined process.  

 

Fig. 5: Response time in seconds for the input list of 27 courses and threshold values between 0 and 15 

Despite the fact that we provide a polynomial time algorithm for computing a legal coloring of the graph, the 
solution cannot be claimed to be optimal since optimal graph coloring is a computationally hard (NP-
complete) problem. However, the particular practical contextual framework makes it a quite efficient 
approach. Even in more complex scenaria (longer course lists, strict attendance requirements, etc) our 
suggested approach certainly contributes in saving time and effort for lecture and exam scheduling in 
university departments.   

4 CONCLUSION AND FUTURE PLANS 

Motivated by the inherently hard task of producing good lecture and exam schedules under constraints 
regarding student participation frequently arising in academic environments, we exploited the interplay 
between two important and well-studied graph-theoretical problems, namely graph coloring and scheduling, 
and developed a MATLAB application which computes efficient lecture and examination timetables for higher 
education departments. Receiving as input a list of courses and a corresponding list of constraints, our 
application utilizes a simple coloring algorithm for computing efficient lecture and exam schedules which are 
then presented in a comprehensive way. These features make our application usable also by non-
specialized personnel for the solution of a problem that is very important in every university. 

Our work showcases how ideas and results from graph theory can be used to provide efficient solutions to 
real-world problems highlighting lecture and examination scheduling of courses in higher education. Our 
findings suggest that even a simple coloring algorithm can perform well in practical scheduling scenaria 
providing more efficient and flexible solutions than those based on heuristics.  

Ongoing work focuses on the use of more involved coloring algorithms for addressing more complex course 
scheduling instances while minimizing required time resources. Furthermore, future plans include the 
implementation of a more user-friendly graphical interface with additional options for parameterization and 
scalability based on feedback obtained from practical experience.  
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