
Fen ve Mühendislik Bilimleri Dergisi  

 
 

189 
  

 

 
 

Yeni Bir Esnek Küme İşlemi: Esnek İkili Parçalı Simetrik Fark 
İşlemi  

Aslıhan SEZGİN 1   Eda YAVUZ 2   
1 Amasya University, Faculty of Education, Department of Mathematics and Science Education, Amasya, 

Türkiye, aslihan.sezgin@amasya.edu.tr (Sorumlu Yazar/ Corresponding Author) 
2 Amasya University, Graduate School of Natural and Applied Sciences, Department of Mathematics, 

Amasya, Türkiye, yavuz.eda99@gmail.com   
 

Makale Bilgileri ÖZ 

Makale Geçmişi 
Geliş: 21.08.2023 
Kabul: 21.09.2023 
Yayın: 31.12.2023 

Molodtsov tarafından geliştirilen esnek küme teorisi hem teorik hem de pratik olarak birçok alanda 
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INTRODUCTION 

 Due to the existence of some types of uncertainty, we are unable to effectively employ traditional 
ways to address issues in many domains, including engineering, environmental and health sciences, and 
economics. Molodtsov [1], in 1999, proposed Soft Set Theory as a mathematical method to deal with these 
uncertainties. Since then, this theory has been applied to a variety of fields, including information systems, 
decision-making, optimization theory, game theory, operations research, measurement theory, and some 
algebraic structures. The initial contributions to soft set operations were states by Maji et al. [2] and Pei 
and Miao [3]. Following this, Ali et al. [4] introduced and discussed several soft set operations, including 
restricted and extended soft set operations. Sezgin and Atagün [5] discussed the basic properties of soft set 
operations together with their interconnections. They also investigated and defined the idea of restricted 
symmetric difference of soft sets. A brand-new soft set operation called “extended difference of soft sets” 
was presented by Sezgin et al. [6]. Stojanovic [7] introduced the concept of "extended symmetric difference 
of soft sets" and its basic properties were investigated. Two main categories into which the operations of 
soft set theory fall, according to the research, are restricted soft set operations and extended soft set 
operations. Eren [8] created a brand-new class of soft difference operations, which we call as soft binary 
piecewise difference, and they also carefully analyzed the core characteristics of the operation. Other soft 
binary piecewise operations were defined Yavuz [9], who also carefully analyzed their core characteristics. 
Since the operations of soft sets are the fundamental concepts of soft set theory, soft set operations have 
been extensively studied since 2003. For more details, we refer to [10-28]. 

Semirings were initially described by Vandiver [29] in 1934 and consist of a set R together with the two 
associative binary operations addition ''+'' and multiplication ''.” such that distributes over ''+'' from both 
sides. Different researchers, including [30,31], have given a variety of theories and findings regarding 
semirings and some researchers have explored semirings with additive inverse [32-35]. Semirings have 
received extensive study more recently, particularly in respect to applications (see [36]). Semirings are 
very crucial in geometry, nonetheless, they are crucial for solving issues in a variety of applications of 
practical mathematics and information sciences, as well as being significant in pure mathematics. [37-42]. 
By a hemiring, we mean a special semiring with a zero and a commutative addition. In theoretical computer 
science, hemirings, are also crucial. Hemirings occurs naturally in several applications to the theory of 
formal languages, computer sciences and automata [42].  

This paper contributes to the literature on soft set theory by describing a novel soft set operation, which 
we call "soft binary piecewise symmetric difference operation". This paper is arranged in the following 
manner. In Section 2, we recall preliminary concepts in soft set theory together with semirings and 
hemirings. In Section 3, definition and an example of soft binary piecewise symmetric difference operation 
are given and the full analysis of the algebraic properties of this new operation are handled comparatively 
with symmetric difference operation existing in classical set theory and we obtain very remarkable 
analogies. In the same section, it is proved that the set of all the soft sets with a fixed parameter set together 
with the soft binary piecewise symmetric difference operation and the soft restricted intersection operation 
is a commutative hemiring with identity and also Boolean ring. In the conclusion section, we put into focus 
the meaning of the study's findings and its potential influence on the field. 

 PRELIMINARIES 

Definition 1. [1] Let  U be the universal set,  E be the parameter set, P(U) be the power set of U and A ⊆
E. A pair  (F, A) is called a soft set over U where F is a set-valued function such that F: A → P(U). 

Throughout this paper, the set of all the soft sets over U is designated by S-(U). Let A be a fixed subset 
of E and S.(U) be the collection of all soft sets over U with the fixed parameter set A. Clearly S.(U) is a subset 
of S-(U).  From now on, while soft set will be designated by SS and parameter set by PS; soft sets will be 
designated by SSs and parameter sets by PSs for the sake of ease. 

Definition 2. [4] (K,W) is called a relative null SS (with regard to W), denoted by ∅2, if  K(ω) = ∅ for 
all ω∈W and (K,W) is called a relative whole SS (with regard to W), denoted by  U2 if  K(ω) = U  for all 
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ω∈W. The relative whole SS  U-	with regard to E is called the absolute SS over U. We shall denote by ∅∅ the 
unique soft set over U with an empty parameter set, which is called the empty soft set over U. Note that by ∅∅  
and by ∅. are different soft sets over U [17]. 

Definition 3. [3] For two SSs (K,W)  and (T, Ş), (K,W)  is a soft subset of (T, Ş) and it is denoted by  
(K,W) ⊆: (T, Ş),  if  W⊆ Ş and K(ω) ⊆ T(ω), ∀ 𝜔 ∈ W. Two SSs (K,W)  and (T, Ş) are said to be soft equal if 
(K,W) is a soft subset of (T, Ş) and (T, Ş) is a soft subset of (K,W). 

Definition 4. [4] The relative complement of a SS (K,W), denoted by (K,W)=, is defined by (K,W)= =
(K=,W), where K=:	W → P(U) is a mapping given by (K,W)= = U\W(ω) for all ω ∈ W. From now on,  
U\K(ω)=[K(ω)]A will be designated by K’(ω)	for the sake of ease.  

SS operations can be grouped into the following categories as a summary: If " Θ " is used to denote the 
set operations (Namely, Θ here can be ∩, ∪, \, ∆), then the following soft set operations are defined as following: 

Definition 5. [4,5] Let (K,W) and (T, Ş) be SSs over U.	The restricted  Θ operation of (K,W) and (T, Ş) 
is the SS (S, X), denoted	by	(K,W)ΘM(T, Ş) = (B, X) , where  X = W∩ Ş ≠ ∅ and  ∀ω ∈ X, B(ω) =K(ω) 
Θ	T(ω).	Here note that if W∩ Ş = ∅, then (K,W)ΘM(T, Ş) = ∅∅ [17]. 

Definition 6. [3,4,6,7] Let (K,W) and (T, Ş) be SSs over U.	The extended  Θ operation of (K,W) and 
(T, Ş) is the SS (B, X), denoted	by	(K,W)ΘQ(T, Ş) = (B, X) , where  X = W∪ Ş and ∀ω ∈ X  

B(ω) = R
K(ω), ω ∈ W\Ş,
T(ω), ω ∈ Ş\W,

K(ω)	ΘT(ω), 	ω ∈ W ∩ Ş.
  

Definition 7. [8,9] Let (K,W) and (T, Ş) be SSs over U.	The soft binary piecewise Θ  operation of (K,W) 
and (T, Ş) is the SS (B,W), denoted	by, (K,W)ΘS	(T, Ş	) = (B,W), where ∀𝜔 ∊W, 

                 K(𝜔),                        𝜔 ∊W\Ş 

 B(𝜔)= 

                  K(𝜔) Θ T𝜔),            𝜔 ∊W∩Ş      

In mathematics, a semiring is used in abstract algebra to describe an algebraic structure which is more 
general than ring. A semiring (R,+, ・) is an algebraic structure consisting of a non-empty set R together with 
two binary operations usually called addition and multiplication such that (R,+) is a semigroup, (R, ・) is a 
semigroup and multiplication is distributive over addition from both sides. If a semiring has identity with 
multiplication, then it is called semiring with identity and if it has commutative multiplication, then it is called 
a commutative semiring. If there exists an element 0 ∈ R such that 0・a = a・0 = 0 and 0 + a = a + 0 = a for all 
a ∈ R, then 0 is called the zero of R. A semiring with commutative addition and zero element is called a hemiring. 
For more about semirings and hemirings, we refer to [29-42]. 

MAIN RESULTS 

Definition 8. Let (ϻ, Ƶ) and (℧, Ş)	be SSs over U.	 The soft binary piecewise symmetric difference (∆) 
operation of (ϻ, Ƶ) and (℧, Ş)	is the SS (ℵ, Ƶ), denoted	by, (ϻ, Ƶ)∆Z(℧, Ş) = (ℵ, Ƶ), where ∀𝜔∊Ƶ,   

                  ϻ(𝜔),                         𝜔∊Ƶ\Ş            

 ℵ(𝜔)=   

                  ϻ(𝜔) ∆℧(𝜔),             𝜔∊Ƶ∩Ş       

Here note that, in [5], Sezgin and Atagün used "∆Z"  for restricted symmetric difference; however, we 
prefer to use “∆M" for the restricted symmetric difference.  Thus, in what follows,  ∆Z  will be used for the soft 
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binary piecewise symmetric difference, not for restricted symmetric difference. 

Example 9. Let E={e\,e],e^,e_}	be the PS, Ƶ ={e\,	e^} and Ş={e],	e^,	e_}	be the subsets of E and 
U={h\,h],h^,h_,hb} be universe set. Let (ϻ,Ƶ) and (℧,Ş) be SSs over U defined as following 

(ϻ,Ƶ)={(	e\, {h], hb}), (e^,{h\,h],hb})} 

(℧,Ş)={(	e],{h\,h_,hb}), (e^,{h],h^,h_}),(e_,{h^,hb}}) . 

Let (ϻ,Ƶ) ∆Z		(℧,Ş)=(ℵ,Ƶ). Then,       

                  ϻ(𝜔),                         𝜔∊Ƶ\Ş            

 ℵ(𝜔)=   

                  ϻ(𝜔) ∆℧(𝜔),            𝜔∊Ƶ∩Ş         

Since Ƶ={e\,	e^} and Ƶ\Ş={e\}, so ℵ(e\) =ϻ(e\)={h], hb}. And since Ƶ∩Ş={e^} so ℵ(e^)=ϻ(e^) 
∆℧(e^)={h\,h3, h_,hb}. Thus, (ℵ,Ƶ)= (ϻ, Ƶ)	∆Z  (℧,Ş)={	(e\,{h],hb}), (e^, {h\,h3, h_,hb})}. 

The set of elements that are in either sets but not their intersection is known as the symmetric difference 
of two sets in classical theory. Namely, Ƶ∆Ş=(Ƶ∪Ş)\(Ƶ∩Ş). Now, we have: 

Theorem 10.  (ϻ, Ƶ)	∆Z  (℧,Ş)] =[(ϻ,Ƶ) ∪: (℧, Ş)] \Z[(ϻ,Ƶ) ∩M (℧, Ş)]. 

Proof: Since the PS of the SSs of both hand side is Ƶ, the first condition for the soft equality is satisfied. 
Now let (ϻ, Ƶ) 	∪:(℧,Ş)=(ℵ,Ƶ) where ∀𝜔∊Ƶ;   

                   ϻ(𝜔),                       𝜔∊Ƶ\Ş 

 ℵ(𝜔)=       

                   ϻ(𝜔) ∪℧(𝜔) ,          𝜔∊Ƶ∩Ş 

Let (ϻ, Ƶ) ∩M(℧,Ş)=(M,Ƶ∩Ş), where ∀𝜔∊Ƶ∩Ş; M(𝜔)=ϻ(𝜔)∩℧(𝜔).  Let (ℵ,Ƶ)\Z (M,Ƶ∩Ş)=(S,Ƶ), where 
for ∀𝜔∊Ƶ  

                ℵ(𝜔),                          𝜔∊Ƶ\(Ƶ ∩Ş)=Ƶ\Ş 

 S(𝜔)=     ℵ(𝜔) \M(𝜔),              𝜔∊Ƶ∩(Ƶ∩Ş)=Ƶ∩Ş 

Thus,  

                 ϻ(𝜔),                                             𝜔∊(Ƶ\Ş)\Ş=Ƶ\Ş 

 S(𝜔)=     ϻ(𝜔) ∪℧(𝜔) ,                                 𝜔∊(Ƶ∩Ş)\Ş=∅ 

                 ϻ(𝜔) \( ϻ(𝜔)∩℧(𝜔)),                    𝜔∊(Ƶ\Ş)∩Ş=∅ 

                 [ ϻ(𝜔) ∪℧(𝜔)] \( ϻ(𝜔)∩℧(𝜔),    𝜔∊(Ƶ∩Ş) ∩Ş=Ƶ∩Ş       

Thus,  

                 ϻ(𝜔),                                             𝜔∊Ƶ\Ş 

 S(𝜔)=     

                 [ ϻ(𝜔) ∪℧(𝜔)] \(ϻ(𝜔)∩℧(𝜔)),    𝜔∊Ƶ∩Ş       

Hence, 

                 ϻ(𝜔),                     𝜔∊Ƶ\Ş 
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 S(𝜔)=     

                 ϻ(𝜔) ∆℧(𝜔),         𝜔∊Ƶ∩Ş      

Thus, (S,Ƶ)= (ϻ, Ƶ)	∆Z  (℧,Ş). 

In classical theory, Ƶ ∆Ş=(Ƶ\Ş)∪(Ş\Ƶ). Now, we have: 

Theorem 11.  (ϻ, Ƶ)	∆Z  (℧,Ş) =[(ϻ,Ƶ) \Z(℧, Ş)] ∪:[(℧,Ş)\Z(ϻ, Ƶ)]. 

Proof: Since the PS of the SSs of both hand side is Ƶ, the first condition for the soft equality is satisfied. 
Now let (ϻ, Ƶ)	\Z(℧,Ş)=(ℵ,Ƶ) where ∀𝜔∊Ƶ;   

                    ϻ(𝜔),                      𝜔∊Ƶ\Ş 

 ℵ(𝜔)=       

                   ϻ(𝜔) \℧(𝜔) ,           𝜔∊Ƶ∩Ş 

Let (℧,Ş) \Z(ϻ,Ƶ)=(K,Ş) where ∀𝜔∊Ƶ;   

                    ℧(𝜔),                      𝜔∊Ş\Ƶ 

 K(𝜔)=       

                   ℧(𝜔) \ϻ(𝜔) ,          𝜔∊Ş∩Ƶ 

Let (ℵ,Ƶ)∪: (K,Ş)=(S,Ƶ), where for ∀𝜔∊Ƶ;  

                    ℵ(𝜔),                      𝜔∊Ƶ\Ş 

 S(𝜔)=       

                   ℵ(𝜔) ∪K(𝜔) ,          𝜔∊Ƶ∩Ş  

Hence, 

                 ϻ(𝜔),                                             𝜔∊(Ƶ\Ş)\Ş=Ƶ\Ş 
 S(𝜔)=      ϻ(𝜔) \℧(𝜔) ,                                𝜔∊(Ƶ∩Ş)\Ş=∅ 
                 ϻ(𝜔) ∪ ℧(𝜔),                                𝜔∊(Ƶ\Ş)∩(Ş\Ƶ)=∅ 
                 ϻ(𝜔) ∪ (℧(𝜔) \ϻ(𝜔)),                  𝜔∊(Ƶ\Ş)∩(Ş∩Ƶ)=∅ 
                 (ϻ(𝜔) \℧(𝜔)) ∪℧(𝜔),                   𝜔∊(Ƶ∩Ş)∩(Ş\Ƶ)=∅ 
                [ϻ(𝜔) \℧(𝜔)] ∪ [℧(𝜔) \ϻ(𝜔)],     𝜔∊(Ƶ∩Ş)∩(Ş∩Ƶ)=Ƶ∩Ş       

Thus, 

                 ϻ(𝜔),                                             𝜔∊Ƶ\Ş 

 S(𝜔)=     

                [ϻ(𝜔) \℧(𝜔)] ∪ [℧(𝜔) \ϻ(𝜔)],      𝜔∊Ƶ∩Ş       

Therefore,  

                 ϻ(𝜔),                 𝜔∊Ƶ\Ş 
 S(𝜔)=     
                 ϻ(𝜔) ∆℧(𝜔),     𝜔∊Ƶ∩Ş       

Hence, (S,Ƶ)= (ϻ, Ƶ)	∆Z  (℧,Ş). 

Theorem 12. 
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1)  SE(U) is closed under  ∆Z . Namely, when (ϻ,Ƶ) and (℧,Ç) are two  SSs over  U, then so is (ϻ,Ƶ) 
∆Z(℧, Ç) as ∆Z   is a binary operation in SE(U). SƵ(U) is closed under ∆Z , too. 

In classical theory, (M∆L)∆N= M∆(L∆N). As an analogy, we have: 

2)  [(ϻ, Ƶ)	∆Z  (℧,Ƶ)] ∆Z(ℵ,Ƶ)=(ϻ,Ƶ) ∆Z[(℧, Ƶ) ∆Z(ℵ, Ƶ)]. 

Proof: Let (ϻ, Ƶ)	∆Z(℧,Ƶ)=(T,Ƶ), where ∀𝜔∊Ƶ;   

                    ϻ(𝜔),                      𝜔∊Ƶ\Ƶ=∅    

 T(𝜔)=       

                   ϻ(𝜔) ∆℧(𝜔) ,          𝜔∊Ƶ∩Ƶ=Ƶ 

Let (T,Ƶ) ∆Z(ℵ,Ƶ) =(M,Ƶ), where ∀𝜔∊Ƶ;  

                    T(𝜔),                      𝜔∊Ƶ\Ƶ=∅    

 M(𝜔)=       

                   T(𝜔) ∆ℵ(𝜔) ,           𝜔∊Ƶ∩Ƶ=Ƶ 

Thus, 

                  T(𝜔),                            𝜔∊Ƶ\Ƶ=∅    

 M(𝜔)=       

                  [ϻ(𝜔) ∆℧(𝜔)]∆ℵ(𝜔) ,  𝜔∊Ƶ∩Ƶ=Ƶ          

Let (℧,Ƶ)	∆Z  (ℵ,Ƶ)=(K,Ƶ), where ∀𝜔∊Ƶ; 

                    ℧(𝜔),                         𝜔∊Ƶ\Ƶ=∅    

 K(𝜔)=       

                   ℧(𝜔) ∆ℵ(𝜔) ,              𝜔∊Ƶ∩Ƶ=Ƶ 

Let (ϻ,Ƶ) ∆Z(K,Ƶ) =(N,Ƶ), where ∀𝜔∊Ƶ;  

                    ϻ(𝜔),                      𝜔∊Ƶ\Ƶ=∅    

 N(𝜔)=       

                   ϻ(𝜔) ∆K(𝜔) ,          𝜔∊Ƶ∩Ƶ=Ƶ 

Thus, 

                  ϻ(𝜔),                           𝜔∊Ƶ\Ƶ=∅    

 N(𝜔)=       

                  ϻ(𝜔) ∆[℧(𝜔)∆ℵ(𝜔)] , 𝜔∊Ƶ∩Ƶ=Ƶ           

It is seen that (M,Ƶ)=(N,Ƶ). 

Namely, for the SSs whose PSs are the same,  ∆Z	 is associative. Here's what we have right now: 

3)  [(ϻ, Ƶ)	∆Z(℧,Ç)] ∆Z(ℵ,Ö) = (ϻ,Ƶ) ∆Z[(℧,Ç) ∆Z(ℵ,Ö)] where Ƶ∩Ç’∩Ö=∅. 

Proof: Let (ϻ, Ƶ)	∆Z(℧,Ç)=(T,Ƶ), where ∀𝜔∊Ƶ;   

                    ϻ(𝜔),                      𝜔∊Ƶ\Ç 
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 T(𝜔)=       

                   ϻ(𝜔) ∆℧(𝜔) ,          𝜔∊Ƶ∩Ç 

Let (T ,Ƶ) ∆Z(ℵ,Ö) =(M,Ƶ), where ∀𝜔∊Ƶ;  

                    T(𝜔),                      𝜔∊Ƶ\Ö   

 M(𝜔)=      

                    T(𝜔) ∆ℵ(𝜔) ,          𝜔∊Ƶ∩Ö 

Thus,  

                 ϻ(𝜔),                                 𝜔∊(Ƶ\Ç)\Ö=Ƶ∩Ç’∩Ö’ 

 M(𝜔)=      ϻ(𝜔) ∆℧(𝜔),                    𝜔∊(Ƶ∩Ç)\Ö=Ƶ∩Ç∩Ö’ 

                 ϻ(𝜔) ∆ℵ(𝜔),                      𝜔∊(Ƶ\Ç)∩Ö=Ƶ∩Ç’∩Ö 

                 [ ϻ(𝜔) ∆℧(𝜔)] ∆ℵ(𝜔),       𝜔∊(Ƶ∩Ç) ∩Ö=Ƶ∩Ç∩Ö            

 Let (℧,Ç) ∆Z  (ℵ,Ö)=(K,Ç), where ∀𝜔∊Ç;   

                  ℧(𝜔),                        𝜔∊Ç\Ö 

 K(𝜔)=       

                 ℧(𝜔) ∆ℵ(𝜔) ,            𝜔∊Ç∩Ö 

Let (ϻ,Ƶ) ∆Z(K,Ç) =(S,Ƶ), where ∀𝜔∊Ƶ;  

                 ϻ(𝜔),                         𝜔∊Ƶ\Ç   

 S(𝜔)=      

                 ϻ(𝜔) ∆K(𝜔) ,            𝜔∊Ƶ∩Ç 

Thus, 

                  ϻ(𝜔),                                𝜔∊Ƶ\Ç 

 S(𝜔)=       ϻ(𝜔) ∆℧(𝜔),                    𝜔∊Ƶ∩(Ç\Ö)=Ƶ∩Ç∩Ö’ 

                 ϻ(𝜔) ∆ [℧(𝜔) ∆ℵ(𝜔)],      𝜔∊Ƶ∩(Ç∩Ö)=Ƶ∩Ç∩Ö             

Here, let’s consider 𝜔∊Ƶ\Ç in the second equation. Since Ƶ\Ç= Ƶ∩Ç’, if 𝜔∊Ç’, then 𝜔∊Ö\Ç or 𝜔∊(Ç∪Ö)’. 
Hence, if 𝜔∊Ƶ\Ç, then 𝜔∊Ƶ∩Ç’∩Ö’ or 𝜔∊Ƶ∩Ç’∩Ö. Thus, it is seen that  (M,Ƶ)=(S,Ƶ), where Ƶ∩Ç’∩Ö=∅. 

In classical theory, symmetric difference operation is commutative, i.e., M∆L= L∆M. However, we have: 

4)  (ϻ, Ƶ)	∆Z  (℧,Ç)≠(℧,Ç) ∆Z(ϻ,Ƶ) 

Proof:  Let (ϻ, Ƶ)	∆Z  (℧,Ç)=(ℵ,Ƶ) . Then, ∀𝜔∊Ƶ; 

                  ϻ(𝜔),                        𝜔 ∊Ƶ\Ç    

ℵ(𝜔)=     

                  ϻ(𝜔) ∆℧(𝜔),            𝜔∊Ƶ∩Ç    

Let (℧,Ç) ∆Z  (ϻ,Ƶ)=(T,Ç) . Then ∀𝜔∊Ç; 

                 ℧(𝜔) ,                        𝜔∊Ç\Ƶ      
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T(𝜔)= 

                 ℧(𝜔) ∆ϻ(𝜔),             𝜔∊Ç∩Ƶ         

Here, while the PS of the SS of left side is Ƶ; the PS of the SS of right side is Ç. Thus,  

(ϻ, Ƶ)	∆Z(℧,Ç)≠(℧,Ç) ∆Z(ϻ,Ƶ). 

Hence,  ∆Z	is not commutative in S-(U), where the PSs of the SSs are different. However, it is easy to see 
that  

(ϻ, Ƶ)∆Z(℧,Ƶ)=(℧,Ƶ)	∆Z  (ϻ,Ƶ). 

That is to say,  ∆Z	is commutative, where the PSs of the SSs are the same. 

In classical theory, ∅ is the identity element for the symmetric difference operation, i.e., M∆∅=∅∆M=M. 
As an analogy, we have: 

5) (ϻ, Ƶ)	∆Z	∅Ƶ=  ∅Ƶ∆Z  (ϻ,Ƶ)= (ϻ, Ƶ)	.  

 Proof:  Let ∅Ƶ=(S,Ƶ). Then, ∀𝜔∊Ƶ;  S(𝜔)= ∅.  Let  (ϻ, Ƶ)	∆Z(S,Ƶ)=(ℵ,Ƶ), where ∀𝜔∊Ƶ, 

                    ϻ(𝜔) ,                         𝜔∊Ƶ\Ƶ =∅    

ℵ(𝜔)=       

                   ϻ(𝜔) ∆ S(𝜔),               𝜔∊Ƶ∩Ƶ=Ƶ 

Hence, ∀𝜔∊Ƶ; ℵ(𝜔)= ϻ(𝜔)∆S(𝜔) = ϻ(𝜔) ∆∅= ϻ(𝜔). Thus, (ℵ,Ƶ)= (ϻ, Ƶ)	.       

Note that, for the SSs whose PS is Ƶ, 	∅Ƶ is the identity element for  ∆Z   in SƵ(U).  

In classical theory, every element is its own inverse for the symmetric difference operation, i.e., M∆M =
∅. As an analogy, we have: 

6) (ϻ, Ƶ)	∆Z  (ϻ,Ƶ)= ∅Ƶ. 

 Proof: Let (ϻ, Ƶ)	∆Z(ϻ,Ƶ)=(ℵ,Ƶ), where ∀𝜔∊Ƶ;   

                    ϻ(𝜔),                          𝜔∊Ƶ\Ƶ=∅    

 ℵ(𝜔)=       

                   ϻ(𝜔) ∆ϻ(𝜔) ,               𝜔∊Ƶ∩Ƶ=Ƶ 

Here ∀𝜔∊Ƶ; ℵ(𝜔)= ϻ(𝜔) ∆ϻ(𝜔)= ∅, thus (ℵ,Ƶ)= ∅Ƶ. 

This property shows us that every SS is its own inverse for  ∆Z   in SƵ(U)  and also  ∆Z	has not idempotency 
property on S-(U). 

REMARK 13:  By Theorem 12 (1), (2), (4), (5) and (6),  (SƵ(U), ∆Z  ) is an abelian group. 

7) (ϻ, Ƶ)	∆Z	∅-=(ϻ,Ƶ). 

Proof:  Let ∅- =(S,E) . Hence ∀𝜔∊E;  S(𝜔)=∅.  Let (ϻ,Ƶ) ∆Z   (S,E)=(ℵ,Ƶ) . Thus, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\E =∅ 

 ℵ(𝜔)=         

                ϻ(𝜔) ∆S(𝜔),       𝜔∊Ƶ∩E=Ƶ 

Hence, ∀𝜔∊Ƶ ℵ(𝜔)= ϻ(𝜔) ∆S(𝜔)= ϻ(𝜔) ∆∅= ϻ(𝜔), so (ℵ,Ƶ)=(ϻ,Ƶ). 

Note that, for the SSs (no matter what the PS is), 	∅- is the right identity element for  ∆Z   in S-(U).  
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8) (ϻ, Ƶ)	∆Z	∅∅= (ϻ, Ƶ)	.  

Proof:  Let ∅∅=(S, ∅).  Let  (ϻ, Ƶ)	∆Z(S, ∅)=(ℵ,Ƶ), where ∀𝜔∊Ƶ, 

                    ϻ(𝜔) ,                         𝜔∊Ƶ\∅=Ƶ    

ℵ(𝜔)=       

                   ϻ(𝜔) ∆ S(𝜔),               𝜔∊Ƶ∩∅=∅ 

Hence, ∀𝜔∊Ƶ; ℵ(𝜔)= ϻ(𝜔). Thus, (ℵ,Ƶ)= (ϻ, Ƶ)	.  

Note that, for the SSs (no matter what the PS is), 	∅∅ is the right identity element for  ∆Z   in S-(U).  

9) ∅∅∆Z  (ϻ,Ƶ)= ∅∅ 

Proof: Let (S, ∅)∆Z  (ϻ, Ƶ)	=(T, ∅). Since, ∅∅ is the unique SS with empty set, (T, ∅)=∅∅. Note that, for the 
SSs (no matter what the PS is), 	∅∅ is the left absorbing element for  ∆Z   in S-(U).  

In classical theory, M∆U=U∆M=M’, where U is the universal set. As an analogy, we have: 

10) (ϻ, Ƶ)	∆Z 	 UƵ=UƵ∆Z	 (ϻ,Ƶ)=(ϻ,Ƶ)r. 

Proof: Let 	UƵ = (T,Ƶ). Then, ∀𝜔∊Ƶ; T(𝜔)=U. Let (ϻ,Ƶ) ∆
Z	(T,Ƶ)=(ℵ,Ƶ) , where ∀𝜔∊Ƶ; 

                    ϻ(𝜔) ,                     𝜔∊Ƶ\Ƶ =∅   

  ℵ(𝜔)=       

                   ϻ(𝜔) ∆T(𝜔),            𝜔∊Ƶ∩Ƶ=Ƶ 

Thus, ∀𝜔∊Ƶ; ℵ(𝜔)= ϻ(𝜔) ∆T(𝜔)= ϻ(𝜔) ∆U= ϻ’(𝜔), hence (ℵ,Ƶ)= (ϻ,Ƶ)r. 

11) (ϻ, Ƶ)∆ZU-=(ϻ,Ƶ)r 

Proof:  Let U- =(T,E). Hence, ∀𝜔∊E, T(𝜔)=U. Let (ϻ, Ƶ)∆Z	(T, E)=(ℵ,Ƶ) , then ∀𝜔∊Ƶ , 

                    ϻ(𝜔),                  𝜔∊Ƶ\E =∅  

 ℵ(𝜔)=         

                   ϻ(𝜔) ∆T(𝜔),       𝜔∊Ƶ∩E=Ƶ 

Hence, ∀𝜔∊Ƶ, ℵ(𝜔)= ϻ(𝜔) ∆T(𝜔)= ϻ(𝜔) ∆U= ϻ’(𝜔), so (ℵ,Ƶ)=(ϻ,Ƶ)r. 

In classical theory, M∆M’ = M’∆M=U, where U is the universal set.  As an analogy, we have: 

12) (ϻ, Ƶ)	∆Z  (ϻ,Ƶ)r=  (ϻ,Ƶ)r	∆Z   (ϻ,Ƶ)= UƵ 

Proof: Let (ϻ,Ƶ)r=(ℵ,Ƶ). Hence, ∀𝜔∊Ƶ; ℵ(𝜔)= ϻ’(𝜔). Let (ϻ, Ƶ)	∆Z   (ℵ,Ƶ)=(T,Ƶ), where ∀𝜔∊Ƶ, 

                   ϻ(𝜔),                           𝜔∊Ƶ\Ƶ=∅  

T(𝜔)=         

                   ϻ(𝜔) ∆ℵ(𝜔),               𝜔∊Ƶ∩Ƶ=Ƶ 

 Hence, ∀𝜔∊Ƶ; T(𝜔)= ϻ(𝜔) ∆ℵ(𝜔)=ϻ(𝜔) ∆ ϻ’(𝜔)= U, thus (T,Ƶ)= UƵ. 

In classical theory, (M∆L)∆(L∆N)= M∆N. As an analogy, we have: 

13) [(ϻ, Ƶ)	∆Z  (℧,Ş)] ∆Z[(℧,Ş)	∆Z  (ℵ,Ƶ)] =(ϻ,Ƶ) ∆Z(ℵ, Ş). 

Proof: Since the PS of the SSs of both hand side is Ƶ, the first condition for the soft equality is satisfied. 
Now let (ϻ, Ƶ)	∆Z(℧,Ş)=(ℵ,Ƶ) where ∀𝜔∊Ƶ;   
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                    ϻ(𝜔),                      𝜔∊Ƶ\Ş 

 ℵ(𝜔)=       

                   ϻ(𝜔) ∆℧(𝜔) ,          𝜔∊Ƶ∩Ş 

Let (℧,Ş) ∆Z(ℵ,Ƶ)=(K,Ş) where ∀𝜔∊Ƶ;   

                    ℧(𝜔),                     𝜔∊Ş\Ƶ 

 K(𝜔)=       

                   ℧(𝜔) ∆ℵ (𝜔) ,         𝜔∊Ş∩Ƶ 

Let (ℵ,Ƶ)∆Z  (K,Ş)=(S,Ƶ), where for ∀𝜔∊Ƶ;  

                    ℵ(𝜔),                      𝜔∊Ƶ\Ş 

 S(𝜔)=       

                   ℵ(𝜔) ∆K(𝜔) ,           𝜔∊Ƶ∩Ş    

Hence, 

                 ϻ(𝜔),                                             𝜔∊(Ƶ\Ş)\Ş=Ƶ\Ş 

 S(𝜔)=      ϻ(𝜔) ∆℧(𝜔) ,                                𝜔∊(Ƶ∩Ş)\Ş=∅ 

                 ϻ(𝜔) ∆ ℧(𝜔),                                 𝜔∊(Ƶ\Ş)∩(Ş\Ƶ)=∅ 

                 ϻ(𝜔) ∆ (℧(𝜔) ∆ℵ (𝜔)),                 𝜔∊(Ƶ\Ş)∩(Ş∩Ƶ)=∅ 

                 (ϻ(𝜔) ∆℧(𝜔)) ∆℧(𝜔),                   𝜔∊(Ƶ∩Ş)∩(Ş\Ƶ)=∅ 

                [ϻ(𝜔) ∆℧(𝜔)] ∆ [℧(𝜔) ∆ℵ (𝜔)],    𝜔∊(Ƶ∩Ş)∩Ş=Ƶ∩Ş         

Thus, 

                 ϻ(𝜔),                                             𝜔∊Ƶ\Ş 

 S(𝜔)=     

                [ϻ(𝜔) ∆℧(𝜔)] ∆ [℧(𝜔) ∆ℵ (𝜔)],    𝜔∊Ƶ∩Ş       

Therefore,  

                 ϻ(𝜔),                 𝜔∊Ƶ\Ş 

 S(𝜔)=     

                 ϻ(𝜔) ∆ℵ (𝜔),     𝜔∊Ƶ∩Ş       

Hence, (S,Ƶ)= (ϻ, Ƶ)	∆Z  (ℵ,Ş). 

In classical theory, M’∆L’=M∆L. Now, we have the folllowing: 

14)	(ϻ,Ƶ)r ∆Z(℧,Ƶ)r=(ϻ, Ƶ)	∆Z(℧,Ƶ) 

Proof:  Let (ϻ,Ƶ)r ∆Z(℧,Ƶ)r=(ℵ,Ƶ). Then, ∀𝜔∊Ƶ, 

 

 

                ϻ’(𝜔),                 𝜔∊Ƶ\Ƶ=∅ 
ℵ(𝜔)= 
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                ϻ’(𝜔) ∆℧’(𝜔),   𝜔∊Ƶ∩Ƶ=Ƶ 

Since ∀𝜔∊Ƶ, ℵ(𝜔)= ϻ’(𝜔) ∆℧’(𝜔)= ϻ(𝜔) ∆℧(𝜔). Thus, (ℵ,Ƶ) =(ϻ, Ƶ)	∆Z(℧,Ƶ). 

In classical theory, for all M, ∅ ⊆ M. As an analogy, we have: 

15) ∅Ƶ ⊆:(ϻ, Ƶ)	∆Z(℧,Ç) and ∅Ç ⊆:(℧,Ç) ∆Z(ϻ,Ƶ).  

In classical theory, for all M,	M ⊆ U. As an analogy, we have: 

16)	 (ϻ, Ƶ)	∆Z(℧,Ç) ⊆: 	UƵ and (℧,Ç) ∆Z(ϻ, Ƶ) ⊆: 	UÇ. 

In classical theory, M∆L = M∆N⟹L=N (Cancellation Law). As an analogy, we have: 

17)	(ϻ, Ƶ)∆Z(℧,Ş)=(ϻ,Ƶ) ∆Z(ℵ, Ş) 	⟹ (℧, Ƶ ∩ Ş) =(ℵ, Ƶ ∩ Ş). 

Proof:  Let (ϻ, Ƶ)∆Z(℧,Ş)=(ℵ,Ƶ). Then, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 

ℵ(𝜔)= 

                ϻ(𝜔) ∆℧(𝜔),      𝜔∊Ƶ∩Ş 

Let, (ϻ,Ƶ) ∆Z(ℵ,Ş)=(T,Ƶ), where  ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 

T(𝜔)= 

                ϻ(𝜔) ∆ℵ(𝜔),       𝜔∊Ƶ∩Ş 

Since, (ℵ,Ƶ)=(T,Ƶ), then for all 𝜔∊Ƶ∩Ş;  ϻ(𝜔) ∆℧(𝜔)= ϻ(𝜔) ∆ℵ(𝜔), thus ℧(𝜔)= ℵ(𝜔) for all 𝜔∊ Ƶ∩Ş. 
Hence, (℧, Ƶ ∩ Ş) =(ℵ, Ƶ∩Ş). Here note that (ϻ, Ƶ)∆Z(℧,Ş)=(ϻ,Ƶ) ∆Z(ℵ, Ş) does not imply that (℧, Ƶ) =(ℵ,Ş). 

 In classical theory, M∆L ⊆ M ∪L. As an analogy, we have:  

18)	(ϻ, Ƶ)	∆Z(℧,Ş) ⊆:  (ϻ, Ƶ) ∪: (℧, Ş)	. 

Proof: Since the PS of the SSs of both hand side is Ƶ, the first condition for the soft subset is satisfied. 
Let (ϻ, Ƶ)	∆Z(℧,Ş)=(ℵ,Ƶ), where ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 

ℵ(𝜔)= 

                ϻ(𝜔) ∆℧(𝜔),      𝜔∊Ƶ∩Ş 

Now let (ϻ, Ƶ) ∪:(℧,Ş)=(T,Ƶ), where ∀𝜔∊Ƶ, 

                ϻ(𝜔),                   𝜔∊Ƶ\Ş 

T(𝜔)= 

                ϻ(𝜔) ∪℧(𝜔),      𝜔∊Ƶ∩Ş 

Since for all 𝜔∊Ƶ\Ş,  ϻ(𝜔) ⊆ ϻ(𝜔) and  ∀𝜔∊Ƶ∩Ş,  ϻ(ω)	∆℧(ω) ⊆ 	ϻ(ω) ∪ ℧(ω), thus for all ∀𝜔∊Ƶ, 
ℵ(𝜔) ⊆T(𝜔). Hence, (ℵ,Ƶ) ⊆:  (T,Ƶ). 

In set theory, M∆L = ∅	 ⇔ M=L. As an analogy, we have (19) and (20) as below: 

19) (ϻ, Ƶ)	∆Z(℧, Ƶ)= ∅Ƶ 	⇔ (ϻ, Ƶ) = (℧, Ƶ) 
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Proof: Necessity: Let 	(ϻ, Ƶ)	∆Z(℧, Ƶ) = (T,Ƶ). Hence, ∀𝜔∊Ƶ, 

                    ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

T(𝜔)=              

                   ϻ(𝜔) ∆℧(𝜔),       𝜔∊Ƶ∩Ƶ=Ƶ 

Since (T,Ƶ)= ∅Ƶ	,	∀𝜔∊Ƶ, T(𝜔)= ∅. Thus, ∀𝜔∊Ƶ, ϻ(𝜔) ∆℧(𝜔)= ∅. Hence, ∀ω ∊ Ƶ,	 ϻ(𝜔)= ℧(𝜔). 

So,  (ϻ, Ƶ) = (℧, Ƶ) 

Sufficiency:  Let (ϻ, Ƶ) = (℧, Ƶ). Thus, ∀ω ∊ Ƶ,	 ϻ(𝜔)= ℧(𝜔). Then, (ϻ, Ƶ)	∆Z(℧, Ƶ)=∅Ƶ. 

20) (ϻ, Ƶ)	∆Z(℧, Ş)= ∅Ƶ 	⇔	 (ϻ, Ƶ\Ş) = ∅Ƶ\Ş	 and (ϻ, Ƶ ∩ Ş)=(℧, Ƶ ∩ Ş). 

Proof: Necessity: Let 	(ϻ, Ƶ)	∆Z(℧, Ş) = (T,Ƶ). Hence, ∀𝜔∊Ƶ, 

                    ϻ(𝜔),                  𝜔∊Ƶ\Ş 

T(𝜔)=              

                   ϻ(𝜔) ∆℧(𝜔),       𝜔∊Ƶ∩Ş 

Since (T,Ƶ)= ∅Ƶ	,	∀𝜔∊Ƶ, T(𝜔)= ∅. Thus, ∀𝜔∊Ƶ\Ş, ϻ(𝜔) = ∅ and ∀𝜔∊Ƶ∩Ş,  ϻ(𝜔) ∆℧(𝜔)= ∅. Hence, 
∀ω ∊ Ƶ ∩ Ş,	  ϻ(𝜔)=℧(𝜔). Therefore, (ϻ, Ƶ\Ş) = ∅Ƶ\Ş and	(ϻ, Ƶ ∩ Ş)=(℧, Ƶ ∩ Ş). This completes the proof of 
necessity condition. 

Sufficiency: Let (ϻ, Ƶ)	∆Z(℧, Ş) = (T,Ƶ). Hence, ∀𝜔∊Ƶ, 

                    ϻ(𝜔),                  𝜔∊Ƶ\Ş 

T(𝜔)=              

                   ϻ(𝜔) ∆℧(𝜔),       𝜔∊Ƶ∩Ş 

Assume that (ϻ, Ƶ\Ş) = ∅Ƶ\Ş	 and (ϻ, Ƶ ∩ Ş)=(℧, Ƶ ∩ Ş). Thus, 

                    ∅,            𝜔∊Ƶ\Ş 

T(𝜔)=              

                   ∅,             𝜔∊Ƶ∩Ş 

Thus, (T,Ƶ)= ∅Ƶ. This completes the proof. 

In classical theory, M∆L = M ∪L⇔ M∩L=∅. As an analogy, we have (21) and (22). 

21)	(ϻ, Ƶ)	∆Z(℧,Ƶ) =(ϻ, Ƶ) ∪: (℧, Ƶ) ⇔ (ϻ, Ƶ) ∩: (℧, Ƶ)= ∅Ƶ		 

Proof:  Let (ϻ, Ƶ)	∆Z(℧,Ƶ)=(ℵ,Ƶ)  and (ϻ, Ƶ) ∪:(℧,Ƶ)=(T,Ƶ). Then, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

ℵ(𝜔)= 

                ϻ(𝜔) ∆℧(𝜔),      𝜔∊Ƶ∩Ƶ=Ƶ 

and 

 

 

 

                ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

T(𝜔)= 
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                ϻ(𝜔) ∪℧(𝜔),      𝜔∊Ƶ∩Ƶ=Ƶ 

Since (ℵ,Ƶ)=(T,Ƶ), then ∀𝜔∊Ƶ, ℵ(𝜔)=ϻ(𝜔)∆℧(𝜔)=ϻ(𝜔)∪℧(𝜔)=T(𝜔). Thus, ∀𝜔∊Ƶ, ϻ(𝜔)∩℧(𝜔)=∅. 
Hence,(ϻ, Ƶ) ∩: (℧, Ƶ)= ∅Ƶ. 

22)	(ϻ, Ƶ)	∆Z(℧,Ş) =(ϻ, Ƶ) ∪: (℧, Ş) ⇔ (ϻ, Ƶ) ∩M (℧, Ş)= ∅Ƶ∩Ş.	 

Proof:  Let (ϻ, Ƶ)	∆Z(℧,Ş)=(ℵ,Ƶ)  and (ϻ, Ƶ) ∪:(℧,Ş)=(T,Ƶ). Then, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 

ℵ(𝜔)= 

                ϻ(𝜔) ∆℧(𝜔),      𝜔∊Ƶ∩Ş 

and 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 

T(𝜔)= 

                ϻ(𝜔) ∪℧(𝜔),      𝜔∊Ƶ∩Ş 

Since (ℵ,Ƶ)=(T,Ƶ), then ∀𝜔∊Ƶ∩Ş, ϻ(𝜔)∆℧(𝜔)=ϻ(𝜔)∪℧(𝜔). Thus, ∀𝜔∊Ƶ∩Ş, ϻ(𝜔)∩℧(𝜔)=∅. Hence, 
(ϻ, Ƶ) ∩M (℧, Ş)= ∅Ƶ∩Ş. 

In classical theory, M⊆ L ⟹ M∆L= L\M. As an analogy, we have (23) and (24):  

23)	(ϻ, Ƶ) ⊆: (℧, Ƶ) ⟹(ϻ, Ƶ)	∆Z(℧,Ƶ)= (℧,Ƶ) \Z (ϻ,Ƶ) . 

Proof:  Let (ϻ, Ƶ) ⊆: (℧, Ƶ). Then, ∀𝜔∊Ƶ, ϻ(𝜔)  ⊆ ℧(ω) and		let	(ϻ, Ƶ)	∆Z(℧, , Ƶ)=(ℵ,Ƶ). Then, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

ℵ(𝜔)= 

                ϻ(𝜔) ∆℧(𝜔),      𝜔∊Ƶ∩Ƶ=Ƶ 

Since ∀𝜔∊Ƶ, ϻ(𝜔)  ⊆ ℧(ω), and ℵ(𝜔)= ϻ(𝜔) ∆℧(𝜔)=℧(𝜔)\ ϻ(𝜔). Thus, (ℵ,Ƶ)=(℧,Ƶ) \Z (ϻ,Ƶ). 

24)	(ϻ, Ƶ) ⊆: (℧, Ş) ⟹(ϻ, Ƶ)	∆Z(℧,Ş) ⊆:  (℧,Ş) \Z (ϻ,Z) .    

Proof:  Let (ϻ, Ƶ) ⊆: (℧, Ş). Then,  Ƶ⊆Ş, and so the first condition for the soft subset is satisfied. Moreover, 
since  (ϻ, Ƶ) ⊆: (℧, Ş),  ∀𝜔∊Ƶ, ϻ(𝜔)  ⊆ ℧(ω).  Let (ϻ, Ƶ)	∆Z(℧, Ş)=(ℵ,Ƶ). Then, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş=∅ 

ℵ(𝜔)= 

                ϻ(𝜔) ∆℧(𝜔),       𝜔∊Ƶ∩Ş=Ƶ 

Let (℧,Ş) \Z (ϻ, Ƶ)=(T,Ş).  Then, ∀𝜔∊Ş, 

                ϻ(𝜔),                  𝜔∊Ş\Ƶ 

T(𝜔)= 

                ℧(𝜔) \ ϻ(𝜔),     𝜔∊Ş∩Ƶ=Z 

Since ∀𝜔∊Ƶ, ϻ(𝜔)  ⊆ ℧(ω), thus ϻ(𝜔) ∆℧(𝜔)=℧(𝜔)\ ϻ(𝜔). Therefore, (ℵ,Ƶ) ⊆:  (T,Ş). 

In classical theory, M ∆(M ∩ L)=M\L. As an analogy, we have: 
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25)	(ϻ,Ƶ) ∆Z[(ϻ, Ƶ) ∩:(℧,Ƶ)]=(ϻ, Ƶ)	\Z(℧,Ƶ). 

Proof: Let (ϻ, Ƶ) ∩:(℧,Ƶ)=(ℵ,Ƶ). Then, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅  

ℵ(𝜔)= 

                ϻ(𝜔) ∩℧(𝜔),      𝜔∊Ƶ∩Ƶ=Ƶ 

Let, (ϻ,Ƶ) ∆Z(ℵ,Ƶ)=(T,Ƶ), where , ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

T(𝜔) 

                ϻ(𝜔) ∆ℵ(𝜔),       𝜔∊Ƶ∩Ƶ=Ƶ 

Hence, 

                ϻ(𝜔),                              𝜔∊Ƶ\Ƶ=∅ 

T(𝜔)= 

                ϻ(𝜔) ∆[ϻ(𝜔) ∩℧(𝜔)],   𝜔∊Ƶ∩Ƶ=Ƶ 

So, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

T(𝜔)= 

                ϻ(𝜔) \℧(𝜔),       𝜔∊Ƶ∩Ƶ=Ƶ 

Thus, (T,Ƶ)=(ϻ, Ƶ)	\Z(℧,Ƶ).  

In classical theory, M∪ L = (M∆L) ∪(M∩L). As an analogy, we have: 

26)	(ϻ, Ƶ) ∪:(℧,Ş)=[(ϻ,Ƶ) ∆Z(℧, Ş)] ∪: [(ϻ, Ƶ) ∩:(℧,Ş)]. 

Proof:  Since the PS of the SSs of both hand side is Ƶ, the first condition for the soft equality is satisfied. 
First let’s consider right side. Let (ϻ, Ƶ) ∪:(℧,Ş)=(ℵ,Ƶ). Then, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 
ℵ(𝜔)= 
                ϻ(𝜔) ∪℧(𝜔),      𝜔∊Ƶ∩Ş 

Now let’s consider left side. Let (ϻ, Ƶ)∆Z(℧,Ş)=(K,Ƶ). Then, ∀𝜔∊Ƶ, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 
K(𝜔)= 
                ϻ(𝜔) ∆℧(𝜔),      𝜔∊Ƶ∩Ş 

Let, (ϻ,Ƶ) ∩:(℧,Ş)=(T,Ƶ), where  ∀𝜔∊Ƶ, 

 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 
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T(𝜔)= 
                ϻ(𝜔) ∩℧(𝜔),      𝜔∊Ƶ∩Ş 

Now, let (K,Ƶ) ∪:(T,Ƶ)=(S,Ƶ), where  ∀𝜔∊Ƶ, 

                K(𝜔),                  𝜔∊Ƶ\Ƶ=∅ 

S(𝜔)= 

                K(𝜔) ∪T(𝜔),      𝜔∊Ƶ∩Ƶ=Ƶ 

Thus,  

                 ϻ(𝜔) ∪ ϻ(𝜔)                                     𝜔∊(Ƶ\Ş) ∩(Ƶ\Ş) =Ƶ\Ş 

 S(𝜔)=       ϻ(𝜔) ∪[ ϻ(𝜔) ∩℧(𝜔)] ,                   𝜔∊(Ƶ\Ş)\ ∩(Ƶ∩Ş) =∅ 

                 [ϻ(𝜔) ∆℧(𝜔)]∪ ϻ (𝜔),                      𝜔∊(Ƶ∩Ş)∩( Ƶ\Ş)=∅ 

                  [ϻ(𝜔) ∆℧(𝜔)] ∪ [ϻ(𝜔) ∩℧(𝜔)],      𝜔∊( Ƶ∩Ş)∩( Ƶ∩Ş)= Ƶ∩Ş 

Thus, 

                ϻ(𝜔),                  𝜔∊Ƶ\Ş 

S(𝜔)= 

                ϻ(𝜔) ∪℧(𝜔),      𝜔∊Ƶ∩Ş 

Thus, (ℵ,Ƶ)=(S, Ƶ). This completes the proof. 

In classical theory, intersection distributes over symmetric difference from both left and right side, that 
is, M∩(L∆N) =(M∩L)∆(M∩N) and (M∆L) ∩N=(M∩N)∆(L∩N) for all M,L,N. As an analogy, we have the 
following two properties: 

27)  (ϻ, Ƶ) 	∩M[(℧,Ş) ∆Z	(ℵ,C)]=[(ϻ, Ƶ)	∩M(℧,Ş)]∆Z	[(ϻ, Ƶ) 	∩M	(ℵ,C)] 

Proof: Let’s first consider the left side. Let (℧,Ş)∆Z	(ℵ,C)=(M,Ş), where ∀𝜔 ∊Ş;         

               ℧(𝜔),                          𝜔∊Ş\C 

M(𝜔)=  

               ℧(𝜔)∆ℵ(𝜔),                𝜔∊Ş∩C             

Assume that (ϻ, Ƶ)	∩M(M,Ş) =(N,Ƶ∩Ş) , where  ∀𝜔∊ Ƶ∩Ş; N(𝜔)=ϻ(𝜔)∩M(𝜔). Hence, 

              ϻ(𝜔)∩℧(𝜔),                         𝜔∊ Ƶ∩(Ş\C) 

N(𝜔)= 

             ϻ(𝜔)∩ [℧(𝜔)∆ℵ(𝜔)],            𝜔∊ Ƶ∩(Ş∩C)         

Now let’s consider the right side: [(ϻ, Ƶ)	∩M(℧,Ş)] ∆Z[(ϻ, Ƶ) 	∩M	(ℵ,C)] . Let (ϻ, Ƶ) 	∩M (℧, Ş) =(K,Ƶ∩Ş), 
where ∀𝜔∊ Ƶ∩Ş, K(𝜔)=ϻ(𝜔)∩℧(𝜔). Let (ϻ, Ƶ) 	∩M(ℵ,C)=(T,Ƶ∩C), where ∀𝜔∊Ƶ∩C; T(𝜔)=ϻ(𝜔)∩ℵ(𝜔). 
Thus, (K,Ƶ∩Ş)∆Z	(T,Ƶ∩C)=(L,Ƶ∩Ş), where ∀𝜔∊ Ƶ∩Ş; 

                K(𝜔),                         𝜔∊ (Ƶ∩Ş)\(Ƶ∩C) 
  L(𝜔)= 
                K(𝜔)∆T(𝜔),               𝜔∊ (Ƶ∩Ş)∩(Ƶ∩C) 

Thus, 
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                ϻ(𝜔)∩℧(𝜔),                                   𝜔∊ (Ƶ∩Ş)\(Ƶ∩C)= Ƶ∩(Ş\C) 

 L(𝜔)= 

               [ϻ(𝜔)∩℧(𝜔)]∆[ϻ(𝜔)∩ℵ(𝜔)],         𝜔∊ (Ƶ∩Ş)∩(Ƶ∩C)=Ƶ∩(Ş∩C)    

Hence, (N,Ƶ∩Ş)=(L,Ƶ∩Ş). Here note that if Ƶ∩Ş=∅, then the left hand side is equal to ∅∅ and the right 
hand side is  ∅∅∆Z[(ϻ, Ƶ) 	∩M	(ℵ,C)]= ∅∅, too. 

28)[(ϻ, Ƶ)	∆Z  (℧,Ş)]	∩M(ℵ,C)= [(ϻ, Ƶ)	∩M(ℵ,C)] ∆Z	[(℧,Ş) ∩M	(ℵ,C)] 

Proof: Let’s consider first the left side. Let (ϻ, Ƶ)	∆Z  (℧,Ş)=(M,Ƶ), where ∀𝜔∊ Ƶ; 

                  ϻ(𝜔),                𝜔∊ Ƶ\Ş 

  M(𝜔) = 

                  ϻ(𝜔) ∆℧(𝜔),    𝜔∊ Ƶ∩Ş 

Now, let (M,Ƶ) ∩M(ℵ,C) =(W,Ƶ∩C), where ∀𝜔∊ Ƶ∩C; W(𝜔)=M(𝜔)∩ℵ(𝜔). Thus, 

               ϻ(𝜔)∩ℵ(𝜔),                        𝜔∊(Ƶ\Ş)∩C 

 W(𝜔)=   

               [ϻ(𝜔) ∆℧(𝜔)] ∩ℵ(𝜔),         𝜔 ∊(Ƶ∩Ş)∩C         

Now let’s consider the right side: [(ϻ, Ƶ) ∩M(ℵ,C)] ∆Z[(℧,Ş) ∩M	(ℵ,C)]. Let (ϻ, Ƶ) ∩(ℵ,C)=(K,Ƶ∩C), where 
∀𝜔∊ Ƶ∩C, K(𝜔)=ϻ(𝜔)∩ℵ(𝜔). Let (℧,Ş)∩M	(ℵ,C)=(T,Ş∩C), where ∀𝜔∊Ş∩C; T(𝜔)=℧(𝜔)∩ℵ(𝜔). Thus, 
(K,Ƶ∩C)	∆Z(T,Ş∩C)=(R,Ƶ∩C), where ∀𝜔∊ Ƶ∩C; 

              K(𝜔),                        𝜔∊ (Ƶ∩C)\(Ş∩C) 

R(𝜔)= 

              K(𝜔) ∆T(𝜔),            𝜔∊ (Ƶ∩C)∩(Ş∩C) 

Thus, 

              ϻ(𝜔)∩ℵ(𝜔),                                 𝜔∊ (Ƶ∩C)\(Ş∩C)=(Ƶ\Ş)∩C 

Q(𝜔)= 

              [ϻ(𝜔)∩ℵ(𝜔)] ∆ [℧(𝜔)∩ℵ(𝜔)],     𝜔∊ (Ƶ∩C)∩(Ş∩C)=(Ƶ∩Ş)∩C   

Hence (W,Ƶ∩C)= (Q,Ƶ∩C), Here note that if Ƶ∩C=∅, then right hand side is  ∅∅∆Z	[(℧,Ş) ∩M	(ℵ,C)]=∅∅, 
and the left hand side is ∅∅, too. 

REMARK 14: In Remark13, we show that (S.(U),∆Z) is an abelian group with identity ∅. and every 
element is its own inverse. Hence, we can deduce that (S.(U),∆Z) is a semigroup. Moreover, in [3,5,17], it was 
proved that  (S.(U), ∩M) is a commutative monoid with identity U.. Hence, we can deduce that (S.(U),∩M) is 
a semigroup. Moreover, by Theorem 12. (27) and (28), 	∩M distributes over  ∆Z	from both sides. Therefore, 
(S.(U), ∆Z, 	∩M)  is a semiring. Further, by Theorem 12 (4) (F,A)∆Z(G,A)=(G,A)∆Z(F,A). That is to say, ∆Z  is 
commutative in S.(U) and (F, A)∆Z∅. = ∅.∆Z(F, A) = (F, A) and (F, A)	∩M 	∅. = ∅. ∩M (F, A) = ∅.. That is 
to say, ∅. is the zero element of (S.(U),∆Z, 	∩M). Therefore, (S.(U),∆Z,∩M) is a hemiring. Besides, since 
(F, A)	∩M U. = U.	∩M (F, A) = (F, A) and (F,A)	∩M(G,A)=(G,A)	∩M(F,A) (see [3,5,17]) , (S.(U),∆Z,∩M) is a 
commutative hemiring with identity U.. 

Also, since (S.(U), ∆Z) is an abelian group by Remark 13, (S.(U),	∩M) is a semigroup by [3,5,17] and 	∩M 
distributes over  ∆Z	 from both side by Theorem 12. (27) and (28), we can also deduce that  (S.(U),∆Z, 	∩M)  is a 
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ring. Also, since (F, A)	∩M (G, A) = (G, A)	∩M (F, A) and (F, A)	∩M U. = U. ∩M (F, A) = (F, A), (see 
[3,5,17]), 		(S.(U),∆Z,∩M) is a commutative ring with identity U.. Moreover, (F, A)] = (F, A)	∩M (F, A) =
(F, A) for all (F, A) ∈ S.(U). Thus, (S.(U),∆Z,∩M)  is a Boolean ring and (F,A)∆Z(F,A)= ∅. and 
(F,A)∆ZG,A)=(G,A)∆Z(F,A) is satisfied naturally as a result of being Boolean ring. 

CONCLUSIONS 

To treat uncertain objects, the soft set and soft operations are powerful parametric tools. In order to 
consider problems containing parametric data, creating new soft operations and deriving their algebraic properties 
and implementations will offer new perspectives. In this regard, this research represents a novel form of soft set 
operation, which we call soft binary piecewise symmetric difference operation. The basic algebraic properties of 
the operations are examined. By examining the distribution rules, we determine the connections between this new 
soft set operation and restricted intersection operation. Additionally, we demonstrate that the set of all the soft 
sets with a fixed parameter set together with the soft binary piecewise symmetric difference operation and the 
restricted intersection operation is a commutative hemiring with identity and also Boolean ring. New varieties of 
soft set operations could be developed in upcoming studies. Additionally, as the soft set operation is a potent 
mathematical tool for the identification of uncertain objects, researchers may propose some novel encryption or 
decision-making techniques as a result of this study. The operation outlined in this study can also be used to revisit 
studies on soft algebraic structures in terms of their algebraic properties. 
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