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 Mesh filtering of surfaces is crucial for noise reduction, feature preservation, and mesh 
simplification in graphics, visualization, and computer vision. In this paper, the detail 
preservation capacities of 3 frequently used filters, i.e., Bilateral, Laplacian, and Taubin 
mesh filters, in mesh filtering have been thoroughly examined by experiments conducted 
on 4 different test meshes. While the Bilateral filter excels in preserving sharp features due 
to its integration of geometric proximity with intensity similarity, the Laplacian filter 
prioritizes smoothness by averaging neighboring vertex positions, and the Taubin filter 
offers a balanced approach by merging attributes of both Laplacian and high-pass filters. 
The Bilateral filter's primary strength lies in its ability to maintain sharp features on a 
mesh, ensuring that intricate details are preserved by considering both the spatial 
closeness and intensity similarity of vertices. The Laplacian filter, although effective in 
achieving mesh smoothness, has the propensity to excessively smooth out sharp and 
defining features, potentially causing a loss of critical details in the processed mesh. The 
Taubin filter integrates the best of both worlds, ensuring smoothness without excessive 
mesh shrinkage; however, it might not excel in feature preservation as effectively as the 
Bilateral filter or smooth as uniformly as the Laplacian filter, making it a middle-ground 
option for certain applications. The statistical analysis of the experimental results has 
shown that the Taubin method is statistically a more successful mesh filtering method for 
the test sets used in this paper. 
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1. Introduction  
 

Mesh surface filtering [1-7] is a pivotal process in the 
domain of computer graphics and computational 
geometry, aimed at enhancing the visual quality and 
computational efficiency of three-dimensional (3D) 
mesh models. A 3D mesh is a discrete representation of a 
surface composed of vertices, edges, and faces. However, 
due to various factors such as acquisition methods, 
simplification techniques, or transmission limitations, 
meshes often contain imperfections, noise, and artifacts 
that can degrade their appearance and usability. Mesh 
surface filtering [8-14], therefore, involves the 
application of algorithms to refine and improve the 
geometric and topological characteristics of mesh 
surfaces. 

The rationale behind filtering mesh surfaces resides 
in the pursuit of producing visually pleasing and 
physically plausible models for applications ranging 
from video games and virtual reality to medical imaging 

and architectural design. The overarching goal is to 
mitigate undesired visual artifacts and irregularities that 
might stem from processes like 3D scanning, 
simplification, or transmission over networks. Filtering 
not only enhances the aesthetics of rendered scenes but 
also assists in downstream tasks such as mesh 
compression, collision detection, and finite element 
analysis. 

Advantages of mesh filtering methods are manifold. 
Firstly, they enable noise reduction [15-21], effectively 
ameliorating the presence of outliers and spurious 
geometries that could arise from sensor inaccuracies or 
data corruption. Secondly, these methods can enhance 
mesh coherency by addressing issues like cracks and 
gaps between adjacent faces, thereby facilitating 
smoother interactions during rendering and simulation. 
Moreover, filtering contributes to the preservation of 
salient features while attenuating superfluous details, 
which proves invaluable in applications where 
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maintaining the fidelity of critical structures is essential. 
Additionally, by optimizing the mesh representation [8, 
22-25], computational overhead is reduced, enabling 
real-time rendering and interaction even in resource-
constrained environments. 

However, mesh filtering methods are not devoid of 
limitations. One notable concern is the potential loss of 
fine details during the filtering process, as aggressive 
filtering can inadvertently erase intricate features that 
are pertinent in certain applications. Furthermore, there 
is an inherent trade-off between filtering strength and 
computational cost; complex filtering algorithms may 
demand significant processing power and memory 
resources, impeding their applicability on low-end 
devices. Selecting an appropriate filtering method and 
parameter configuration can also be nontrivial, 
necessitating domain expertise and iterative refinement. 

In conclusion, mesh surface filtering constitutes a 
vital facet of modern computer graphics, serving to 
enhance visual quality, alleviate artifacts, and improve 
computational efficiency in 3D mesh models. While its 
advantages encompass noise reduction, coherency 
enhancement, and feature preservation, caution must be 
exercised to mitigate potential drawbacks such as detail 
loss and computational overhead. The ongoing evolution 
of filtering techniques continues to address these 
challenges, contributing to the creation of compelling, 
high-fidelity virtual environments and simulations 
across diverse domains. 

Mesh filtering methods [10, 26-28] have gained 
considerable attention due to their applications in 
graphics, computer vision, and geometric modelling. 
These methods target the removal of noise, preservation 
of salient features, and simplification of mesh structures. 
One of the early and widely-adopted techniques is 
Laplacian smoothing, which averages the positions of 
neighbouring vertices, but it often over-smooths and may 
degrade mesh quality. Bilateral mesh filtering [2, 5, 23, 
29, 30] emerged as a promising alternative by combining 
geometric closeness and intensity resemblance, 
effectively preserving sharp features. However, its 
computational expense has been a limitation for real-
time applications.  

Taubin [31] introduced a method that leverages the 
combination of low-pass and high-pass filters, 
preventing mesh shrinkage observed in traditional 
Laplacian approaches. Recently, non-local means and 
anisotropic diffusion methods have been explored, 
inspired by their success in image processing. These 
methods consider wider neighbourhoods or adapt 
filtering based on local mesh properties. Guided mesh 
filtering, where the filter operation is guided by another 
signal, has also shown promising results, especially in 
texture and feature preservation. Wavelet-based 
techniques, which decompose the mesh into frequency 
bands, enable multi-resolution processing and have 
applications in mesh compression. 

Deep learning-based mesh filtering [32, 33], a 
burgeoning area, employs neural networks to learn 
optimal filtering parameters from data. While traditional 
methods rely on hand-crafted heuristics, these learnable 
filters adapt based on the input, making them versatile. 
In conclusion, mesh filtering remains an active research 

domain with methodologies ranging from classical 
algorithms to modern machine learning approaches, 
each with its own merits and challenges. 

Bilateral mesh filtering maintains sharp features by 
weighing both geometric proximity and feature 
similarity, making it particularly suitable for preserving 
edges but can be computationally intensive. On the other 
hand, Laplacian filtering smoothens the surface by 
averaging neighbouring vertices, which can lead to over-
smoothing of sharp details if not controlled properly. In 
contrast, Taubin filtering employs a sequence of low-pass 
and high-pass filters, ensuring effective smoothing 
without causing the mesh to shrink, offering a balance 
between detail preservation and noise reduction. 

This paper presents experiments on the use of 
Bilateral, Laplacian, and Taubin mesh filters in 
photogrammetry and computer vision. These filters are 
commonly used in these fields because they are effective 
at smoothing meshes while preserving sharp features. 

The rest of this paper is organized as follows: Section 
2 introduces Mesh Filtering Methods. In Section 3, 
Experiments are presented. In Section 4, Results and 
Conclusions are given. 

 

2. Mesh Filtering Methods 
 

This section briefly presents the analytical structures, 
basic features, advantages, and disadvantages of the 
Bilateral, Laplacian, and Taubin filters used in the 
Experiments section of this paper. 

 

2.1. Bilateral Mesh Filtering 
 

Bilateral mesh filtering is a method that applies 
Bilateral filtering principles to 3D mesh data. It aims to 
smooth the mesh while preserving important features 
such as edges and corners. The filtering process takes 
into account both geometric distance and attribute 
similarity between vertices to determine the filtering 
weights. 

Given a mesh with vertices 𝑉 and faces 𝐹, the filtered 
position 𝑝𝑖′ for vertex 𝑝𝑖  can be computed using Equation 
1: 
 

𝑝𝑖′ =
1

𝑊𝑖
∑𝑤𝑖𝑗

𝑁

𝑗=1

⋅ 𝑝𝑗  (1) 

 
where, 𝑁 is the number of neighboring vertices of  𝑝𝑖 . 

The 𝑝𝑗  represents the neighboring vertex positions. The 

𝑤𝑖𝑗  is the Bilateral weight between vertices 𝑝𝑖  and 𝑝𝑗 .  

𝑤𝑖𝑗  𝑖𝑠 the normalization term. The 𝑤𝑖𝑗  is computed as a 

combination of spatial and range weights by using 
Equation 2: 
 

𝑤𝑖𝑗 = 𝑤𝑠(‖𝑝𝑖 − 𝑝𝑗‖) ⋅ 𝑤𝑟(𝑝𝑖 , 𝑝𝑗) (2) 
 

where,  𝑤𝑠(‖𝑝𝑖 − 𝑝𝑗‖) is the spatial weight based on 

the geometric distance between vertices 𝑝𝑖  and 𝑝𝑗 . The  

𝑤𝑟(𝑝𝑖 , 𝑝𝑗) is the range weight based on attribute 

similarity between vertices 𝑝𝑖  and 𝑝𝑗 .  In this filter, 

𝑤𝑠(‖𝑝𝑖 − 𝑝𝑗‖) and 𝑤𝑟(𝑝𝑖 , 𝑝𝑗) represent the spatial and 

range weights, respectively. Bilateral mesh filter iterates 
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over each vertex in the mesh, computes the weighted 
sum of neighboring vertex positions, and updates the 
filtered position accordingly while considering 
normalization. Pseudo-code of Bilateral mesh filter is 
given in Figure 1. 

 

 
Figure 1. Pseudo-code of Bilateral mesh filter. 

 
Bilateral mesh filter offers several advantages that 

make it a valuable technique for enhancing the visual 
quality and preserving important features of 3D mesh 
models: 

Bilateral filtering is inherently designed to preserve 
edges and boundaries within the data. This characteristic 
is crucial for maintaining the sharpness and integrity of 
important features in the mesh, such as edges, corners, 
and creases. Unlike traditional smoothing methods that 
tend to blur edges, bilateral filtering ensures that these 
features remain well-defined. One of the strengths of 
bilateral mesh filtering lies in its ability to take into 
account attributes associated with vertices, such as 
normal or colours. This enables the filtering process to 
consider not only geometric proximity but also attribute 
similarity when computing filtering weights. As a result, 
attributes are preserved more effectively, contributing to 
the overall visual fidelity of the mesh. Bilateral filtering 
effectively reduces noise and small-scale irregularities 
present in the mesh data. The incorporation of attribute-
based filtering helps distinguish between meaningful 
variations and noise, allowing the method to selectively 
smooth out noise while retaining genuine geometric and 
attribute details.  

Bilateral filtering is highly adaptable and can be 
tailored to specific applications and requirements. By 
adjusting the parameters of the spatial and range 
weights, users can control the strength of the filtering 
effect. This adaptability makes bilateral filtering suitable 
for a wide range of scenarios, from artistic stylization to 
scientific simulations. Unlike some traditional smoothing 
methods that may result in blurring and distortion of 
geometric details, bilateral filtering smooths the mesh 
while preserving important features. This is particularly 
advantageous for applications where maintaining the 
integrity of the mesh's structural characteristics is 
essential. 

Bilateral filtering strikes a balance between noise 
reduction and feature preservation. It selectively 
smooths areas that are less critical while leaving 
important features untouched. This characteristic is 
particularly valuable for applications where a 
compromise between overall smoothness and the 
preservation of key details is required.  

The advantages of bilateral mesh filtering extend 
across various domains, including computer graphics, 
medical imaging, computer-aided design, and more. It 
finds applications in rendering, modelling, simulation, 
and analysis, making it a versatile technique with wide-
ranging benefits. While more computationally intensive 
methods may achieve better results, bilateral filtering 
strikes a good balance between quality and efficiency. It 
is often suitable for real-time or interactive applications, 
offering an effective compromise between filtering 
strength and computational complexity. 

In summary, bilateral mesh filtering is advantageous 
due to its ability to preserve edges, accommodate 
attribute-based filtering, reduce noise, offer 
customizable adjustments, and strike a balance between 
feature preservation and smoothing. These advantages 
make it a valuable tool for enhancing the visual quality 
and fidelity of 3D mesh models across diverse 
applications. 
 
2.2. Laplacian Mesh Filtering 

 

Laplacian Mesh Filtering is a widely used method for 
mesh smoothing and denoising. It leverages the 
Laplacian operator to iteratively update vertex positions 
based on the local geometric information of 
neighbouring vertices.  

The Laplacian operator quantifies the difference 
between a vertex and the average of its neighbours, 
capturing the curvature and shape characteristics of the 
mesh. Let's denote the Laplacian operator as 𝛥 and the 
position of a vertex 𝑣𝑖  as 𝒑𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). The Laplacian 
operator applied to the position of a vertex is defined in 
Equation 3: 
 

𝛥𝒑𝑖 =
1

|𝒩𝑖|
∑ (𝒑𝑗 − 𝒑𝑖)

𝑣𝑗∈𝒩𝑖

 (3) 

 
where 𝒩𝑖  represents the set of neighboring vertices of 

𝑣𝑖 .  
The basic outline of the Laplacian Mesh Filtering 

algorithm is given below: 
1. Initialize: Given a mesh with vertices 𝒑𝑖  and 

connectivity information. 
2. Choose the number of iterations 𝑁. 
3. For k = 1 to N: 
   a. For each vertex 𝑣𝑖: 
      i. Compute the Laplacian update: 𝛥𝒑𝑖 =

1

|𝒩𝑖|
∑ (𝒑𝑗 − 𝒑𝑖)𝑣𝑗∈𝒩𝑖

. 

      ii. Update the vertex position: 𝒑𝑖
(𝑘)
= 𝒑𝑖

(𝑘−1)
+ 𝜆 ⋅

𝛥𝒑𝑖 , 
 
where 𝜆 is a user-defined weight controlling the step 

size. 
The Pseudo-code of Laplacian mesh filtering is given 

in Figure 2. 

In this pseudo-code, 𝒑𝑖
(𝑘)

represents the position of 

vertex 𝑣𝑖  after 𝑘 iterations. 
Laplacian Mesh Filtering iteratively adjusts vertex 

positions, redistributing their positions based on the 
average displacement of neighbouring vertices. This 
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process tends to smooth out noise and small-scale 
irregularities in the mesh while preserving overall shape 
characteristics. The parameter 𝜆 controls the extent of 
the update and should be chosen carefully to achieve the 
desired smoothing effect without causing over-
smoothing or distortion. 
 

 
Figure 2. Pseudo-code of Laplacian mesh filtering. 
 

The Laplacian Mesh Filtering method is conceptually 
straightforward and easy to implement. It involves a 
simple iterative process that updates vertex positions 
based on the Laplacian operator, making it accessible to 
both novice and experienced users.  

Laplacian filtering tends to preserve local geometric 
coherence. It smooths the mesh while maintaining the 
overall shape characteristics and connectivity of the 
original mesh. This makes it suitable for applications 
where preserving essential features is important.   

Laplacian filtering is effective in reducing noise and 
small-scale irregularities in the mesh. By averaging 
vertex positions with their neighbours, the method can 
mitigate high-frequency noise that might be present due 
to data acquisition or other factors.  The filtering strength 
can be controlled using the parameter 𝜆. Users can adjust 
this parameter to achieve the desired level of smoothing. 
This level of control is valuable when adapting the 
filtering to different meshes and requirements. 

While Laplacian filtering is efficient at smoothing, it 
can inadvertently lead to detail loss, particularly in 
regions with high curvature or intricate features. The 
iterative nature of the algorithm tends to distribute 
vertex positions toward an average, potentially 
diminishing fine details.  In some cases, Laplacian 
filtering can introduce shape distortion, especially when 
the smoothing process is too aggressive. This might 
cause unintended changes in the mesh's shape that could 
impact the overall visual quality or intended 
characteristics of the model.  

Laplacian filtering can lead to uneven smoothing, 
where some parts of the mesh are smoothed more than 
others. This is due to the reliance on local neighbourhood 
information, which might not be uniform across the 
entire mesh. The performance of Laplacian filtering is 
highly dependent on the choice of the 𝜆 parameter. 
Selecting an inappropriate value can lead to suboptimal 
results, such as under-smoothing or over-smoothing.  In 
meshes with irregular connectivity or boundary 
conditions, Laplacian filtering can sometimes introduce 
artifacts like shrinkage or expansion of specific regions. 
This is because the filtering process is sensitive to the 
local vertex distribution and connectivity. 

In summary, Laplacian Mesh Filtering offers a 
straightforward approach to mesh smoothing with 
advantages including simplicity, noise reduction, and 
local coherence. However, it comes with the trade-offs of 
potential detail loss, shape distortion, and sensitivity to 

parameter choices. Users should carefully consider these 
factors and their specific application requirements when 
choosing Laplacian filtering as a mesh enhancement 
technique. 

 
2.3. Taubin Mesh Filtering 
 

Taubin Mesh Filtering is a popular method for 
smoothing and denoising 3D mesh surfaces. It was 
introduced by Gabriel Taubin in 1995 as an iterative 
technique that alternates between applying two distinct 
filters: a Laplacian smoothing filter and a high-pass filter. 
This approach effectively reduces noise while preserving 
important features of the mesh.  

Given a 3D mesh represented by vertices (𝒗𝑖) and 
faces (𝒇𝑗) with associated normal (𝒏𝑖), the Laplacian 

smoothing step can be represented by using Equation 4: 
 

𝒗𝑖
(𝑘+1)

= 𝒗𝑖
(𝑘)
+ 𝜆1 ⋅ Laplacian(𝐯𝑖

(𝑘)
) (4) 

 
where (𝜆1) is a user-defined parameter controlling 

the amount of smoothing, and Laplacian(𝐯𝑖
(𝑘)
) computes 

the Laplacian operator on vertex (𝒗𝑖) at iteration (𝑘).  
The Laplacian operator measures the difference 

between the vertex and the average of its neighbouring 
vertices, thus smoothing out irregularities. Following the 
Laplacian smoothing, the high-pass filter step is applied 
using Equation 5: 
 

𝒗𝑖
(𝑘+1)

= 𝒗𝑖
(𝑘+1)

− 𝜆2 ⋅ Laplacian(𝐯𝑖
(𝑘+1)

) (5) 
 

Here, (𝜆2) is another user-defined parameter 
controlling the amount of high-frequency detail 
preservation. This step effectively compensates for the 
excessive smoothing introduced by the previous step, 
enhancing the overall fidelity of the filtered mesh. 

The pseudo-code of Taubin Mesh Filtering method is 
given in Figure 3. 
 

 
Figure 3. Pseudo-code of Taubin mesh filtering. 

 

This pseudo-code outlines the core steps of the 
Taubin Mesh Filtering method, including Laplacian 
computation and the iterative application of smoothing 
and high-pass filtering. The parameters (𝜆1), (𝜆2), and 
the number of iterations (𝐾) can be adjusted to achieve 
the desired level of smoothing and detail preservation for 
a given mesh. 

The Taubin Mesh Filtering method offers several 
advantages and drawbacks, making it an interesting 
choice for mesh smoothing and denoising in certain 
scenarios.   

Taubin Mesh Filtering employs an iterative process 
that alternates between Laplacian smoothing and high-
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pass filtering. This approach allows for controlled 
smoothing while preserving important geometric details. 
The iterative nature enables users to fine-tune the degree 
of filtering.  The method is effective in reducing noise and 
artifacts present in mesh data.  

The Laplacian smoothing step averages vertex 
positions, which helps in attenuating high-frequency 
noise components, resulting in a smoother appearance. 
The high pass filtering step counteracts excessive 
smoothing introduced by the Laplacian operation. This 
ensures that significant geometric features, such as edges 
and corners, are better preserved compared to methods 
that solely rely on simple smoothing techniques. The user 
has control over two crucial parameters: (𝜆1) and (𝜆2). 
These parameters influence the amount of smoothing 
and detail preservation, allowing users to tailor the 
filtering process to suit the specific characteristics of the 
input mesh and the desired visual outcome. The method 
is relatively computationally efficient due to its localized 
nature. The Laplacian and high pass filtering operations 
involve neighbouring vertices, making them amenable to 
parallelization and optimization techniques. 

Depending on the chosen parameter values and the 
number of iterations, aggressive smoothing may result in 
the loss of fine geometric details. While the high pass 
filter aims to mitigate this, there can still be instances 
where essential details are inadvertently smoothed out.  

The effectiveness of the Taubin method is closely tied 
to parameter settings. Selecting appropriate values for 
(𝜆1) and (𝜆2) is not always straightforward, and finding 
the right balance between smoothing and preserving 
details requires experimentation.  In certain cases, 
excessive filtering iterations can lead to mesh distortion. 
Particularly, regions with high curvature might exhibit 
undesirable artifacts due to the iterative nature of the 
smoothing process.   

The Taubin method's effectiveness diminishes in 
cases where the input mesh has highly irregular or noisy 
features. For instance, when the noise levels are 
extremely high or the mesh lacks clear geometric 
structure, the method might struggle to achieve 
satisfactory results.  Despite its advantages, Taubin Mesh 
Filtering may necessitate manual intervention to achieve 
optimal results. Users might need to fine-tune 
parameters and conduct iterative trials to strike a 
balance between smoothing and feature preservation. 

In conclusion, the Taubin Mesh Filtering method is a 
versatile approach for smoothing and denoising 3D mesh 
surfaces. Its iterative nature and parameter control offer 
flexibility in achieving varying degrees of noise reduction 
and detail preservation. However, careful consideration 
of parameter settings and an understanding of its 
limitations are essential to ensure effective application 
and avoid unintended consequences such as detail loss or 
mesh distortion. 
 
3. Experiments  
 

In the experiments, 4 different meshes were used: 
“David” (Figure 4A), “Roma” (Figure 4B), “Man” 
(Figure 5A), and “Girl” (Figure 5B).   

The “David” test mesh has 72,685 faces, and 36,714 
vertices. The “Roma” test mesh consists of 55,847 faces, 

and 28,254 vertices. The “Man” test mesh contains 
30,000 faces, and 15,258 vertices. The “Girl” test mesh 
has 6,999 faces, and 3,658 vertices.  The spatial 
coordinates of the related mesh’s are given in centimetre. 
The spatial boundaries for the "Man" are given as: 150 ≤
𝑥 ≤ 200, 3.77 ≤ 𝑦 ≤ 43.32, 𝑎𝑛𝑑 2.23 ≤ 𝑧 ≤ 67.39.  The 
spatial boundaries for the "Roma" are given as: 100 ≤
𝑥 ≤ 200, 110.31 ≤ 𝑦 ≤ 165.95, 𝑎𝑛𝑑  204.33 ≤ 𝑧 ≤
295.11. The spatial boundaries for the "David" are given 
as: 100 ≤ 𝑥 ≤ 200, 75 ≤ 𝑦 ≤ 150, 100 ≤ 𝑧 ≤ 200. The 
spatial boundaries for the "Girl" are given as: 100 ≤ 𝑥 ≤
200,   84.14 ≤ 𝑦 ≤ 170.63, 𝑎𝑛𝑑 56.29 ≤ 𝑧 ≤ 210.63. 

Corrupted meshes are generated by adding random 
valued uniform impulsive noise to the vertex positions of 
the original meshes. The vertex positions of the 
generated corrupted meshes are repaired by optimizing 
the internal parameters of the filters used in the 
experiments.   

The optimal values for the related threshold 
parameters of Bilateral, Laplacian, and Taubin filters 
have been optimized using the BSA algorithm [34-37]. 
Taubin filter is applied to related meshes using 5 
iterations. BSA is a very powerful, non-recursive, 
iterative evolutionary search method developed by 
Çivicioğlu [34]. Evolutionary search algorithms are very 
popular because they produce useful results in the 
optimization of non-differentiable, multimodal, and 
continuous numerical problems. For BSA, the size of the 
population is set to 20, and the maximum number of 
iterations is empirically chosen as 100,000. The search 
space lower and upper bound values have been 
determined as [low=0; up=1] only for the first iteration. 
In the following iterations, BSA employed the unbounded 
search method to obtain the optimum values for the 
related filters.   

The objective function used for BSA is given in 
Equation 6: 
 

𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟

|𝐶𝑀𝑒𝑠ℎ𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑂𝑀𝑒𝑠ℎ| (6) 

 
where 𝐶𝑀𝑒𝑠ℎ𝐹𝑖𝑙𝑡𝑒𝑟 , and 𝑂𝑀𝑒𝑠ℎ denote response of 

the filter used in the current experiment, and original 
mesh, respectively.  

All the filtering methods used in the Experiments 
were implemented in MATLAB. The Experiments were 
conducted by using a computer with Intel(R) Xeon(R) 
CPU E5-2650 v2 @ 2.60GHz   2.60 GHz (2 CPU), 64GB 
RAM.   

Table 1 shows the ‘Mean Square Error’’ values 
calculated between the meshes obtained from the 
experiments and the original mesh. When Table 1 is 
examined, it is seen that the Taubin method is relatively 
more successful in filtering out the relevant data. 
 

Table 1. ‘Mean Square Error’ values computed between 
filtered and original mesh. 

Test Set Noisy 
Filtering Methods 

Bilateral 
Filer 

Laplacian Taubin 

David 0.0837 0.0417 0.0215 0.0108 
Roma 0.0954 0.0567 0.0349 0.0181 
Man 0.1054 0.0600 0.0381 0.0270 
Girl 0.0910 0.0580 0.0276 0.0198 
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Figure 4. The mesh surface without texture for (a) Original, (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e) 
Taubin are illustrated in rows A#1, and B#1. The normalized- displacement values superimposed on the related mesh 
surfaces as texture for (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e) Taubin are illustrated in rows A#2, 

and B#2.   
 

 
Figure 5. The mesh surface without texture for (a) Original, (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e) 
Taubin are illustrated in rows C#1, and D#1. The normalized-displacement values superimposed on the related mesh 
surfaces as texture for (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e) Taubin are illustrated in rows C#2, 

and D#2.  
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The meshes produced by the relevant filters at the 
end of the experiments are shown in Figure 4 and Figure 
5. Column (a) of Figure 4 and Figure 5 shows the original 
mesh surface. Column (b) of Figure 4 and Figure 5 shows 
the corrupted mesh with random valued uniform 
impulsive noise, where noise ~ U [- 0.50; 0.50] as cm., 
and U denotes continuous uniform distribution. 
 
 

4. Results and Conclusion  
 

In this paper, the detail preservation capabilities of 
Bilateral, Laplacian, and Taubin mesh filtering methods 
have been examined in detail using 4 test sets. The 
Bilateral filter has a relatively more complex analytical 
structure compared to the Laplacian, and Taubin filters. 
Taubin filtering is relatively more successful in 
preventing deformation on the mesh. In concave and 
convex areas, Laplacian, and Taubin tend to preserve 
mesh details relatively better. The Bilateral filter causes 
a partial over-smoothing effect on the edge areas. In 
contrast, visually, the Bilateral filter tends to produce 
more continuous surface data. The Laplacian method has 
caused a partial over-sharp effect on the edge areas. 
Although the results obtained from the study suggest 
that the success of the mesh filter is somewhat data-
dependent, it has been observed that the Taubin method 
is more successful in detail preservation compared to 
other methods used in the experiments. 

 

 
Author contributions 
 
Erkan Beşdok: Data curation, Software, Validation. 
Pınar Çivicioğlu: Conceptualization, Methodology, 
Software, Writing, Editing   
 
 
Conflicts of interest 
 
The authors declare no conflicts of interest. 

 
 

References  
 
 

1. Liu, Y., Coombes, M., & Liu, C. (2023). Mesh-based 
consensus distributed particle filtering for sensor 
networks. IEEE Transactions on Signal and 
Information Processing over Networks, 9, 346-356. 
https://doi.org/10.1109/TSIPN.2023.3278469 

2. Liu, B., Li, B., Cao, J., Wang, W., & Liu, X. (2023). 
Adaptive and propagated mesh filtering. Computer-
Aided Design, 154, 103422. 
https://doi.org/10.1016/j.cad.2022.103422 

3. Fábián, G. (2023). Generalized Savitzky–Golay filter 
for smoothing triangular meshes. Computer Aided 
Geometric Design, 100, 102167. 
https://doi.org/10.1016/j.cagd.2022.102167 

4. Han, H. D., & Han, J. K. (2022). Modified bilateral filter 
for feature enhancement in mesh denoising. IEEE 
Access, 10, 56845-56862. 
https://doi.org/10.1109/ACCESS.2022.3176961 

5. Zhong, S., Song, Z., Liu, Z., Xie, Z., Chen, J., Liu, L., & 
Chen, R. (2021). Shape-aware mesh normal 
filtering. Computer-Aided Design, 140, 103088. 
https://doi.org/10.1016/j.cad.2021.103088 

6. Zhao, W., Liu, X., Wang, S., Fan, X., & Zhao, D. (2019). 
Graph-based feature-preserving mesh normal 
filtering. IEEE Transactions on Visualization and 
Computer Graphics, 27(3), 1937-1952. 
https://do.iorg/10.1109/TVCG.2019.2944357 

7. Zhang, J., Deng, B., Hong, Y., Peng, Y., Qin, W., & Liu, L. 
(2018). Static/dynamic filtering for mesh 
geometry. IEEE transactions on visualization and 
computer graphics, 25(4), 1774-1787. 
https://do.org/10.1109/TVCG.2018.2816926 

8. Noel, G., Djouani, K., Van Wyk, B., & Hamam, Y. (2012). 
Bilateral mesh filtering. Pattern Recognition 
Letters, 33(9), 1101-1107. 
https://doi.org/10.1016/j.patrec.2012.02.008 

9. Loménie, N., & Stamon, G. (2008). Morphological 
mesh filtering and α-objects. Pattern Recognition 
Letters, 29(10), 1571-1579. 
https://doi.org/10.1016/j.patrec.2008.03.019 

10. Kim, B., & Rossignac, J. (2005). Geofilter: Geometric 
selection of mesh filter parameters. In Computer 
Graphics Forum, 24(3), 295-302. 

11.  Leipoldt, K. J., Happich, T., Kreysa, E., & Gemünd, H. P. 
(1991). Scattering matrix methods for far-infrared 
metal mesh filters. International Journal of Infrared 
and Millimeter Waves, 12, 263-274. 
https://doi.org/10.1007/BF01010300 

12. Chen, P. A. (1987). The performance of dielectric 
coated mesh filter. International Journal of Infrared 
and Millimeter Waves, 8, 29-33. 
https://doi.org/10.1007/BF01010643 

13. Byrne, D. M., Brouns, A. J., Case, F. C., Tiberio, R. C., 
Whitehead, B. L., & Wolf, E. D. (1985). Infrared mesh 
filters fabricated by electron‐beam 
lithography. Journal of Vacuum Science & Technology 
B: Microelectronics Processing and Phenomena, 3(1), 
268-271. https://doi.org/10.1116/1.583243 

14. Byrne, D. M., Brouns, A. J., & Case, F. C. (1984). Infrared 
mesh filters (A). Journal of the Optical Society of 
America A, 1, 1330. 

15. Civicioglu, P. (2009). Removal of random-valued 
impulsive noise from corrupted images. IEEE 
Transactions on Consumer Electronics, 55(4), 2097-
2104. https://do.org/10.1109/TCE.2009.5373774 

16. Civicioglu, P. (2007). Using uncorrupted 
neighborhoods of the pixels for impulsive noise 
suppression with ANFIS. IEEE Transactions on Image 
Processing, 16(3), 759-773. 
https://doi.org/10.1109/TIP.2007.891067 

17. Çivicioğlu, P. (2005). Using LM artificial neural 
networks and η-closest-pixels for impulsive noise 
suppression from highly corrupted images. 
In International Symposium on Neural Networks (pp. 
679-684). https://doi.org/10.1007/11427445_110 

18. Beşdok, E., Çivicioğlu, P., & Alçı, M. (2005). Using Anfis 
with circular polygons for impulsive noise 
suppression from highly distorted images. AEU-
International Journal of Electronics and 
Communications, 59(4), 213-221. 
https://doi.org/10.1016/j.aeue.2004.11.041 

https://doi.org/10.1109/TSIPN.2023.3278469
https://doi.org/10.1016/j.cad.2022.103422
https://doi.org/10.1016/j.cagd.2022.102167
https://doi.org/10.1109/ACCESS.2022.3176961
https://doi.org/10.1016/j.cad.2021.103088
https://doi.org/10.1109/TVCG.2019.2944357
https://doi.org/10.1109/TVCG.2018.2816926
https://doi.org/10.1016/j.patrec.2012.02.008
https://doi.org/10.1016/j.patrec.2008.03.019
https://doi.org/10.1007/BF01010300
https://doi.org/10.1007/BF01010643
https://doi.org/10.1116/1.583243
https://doi.org/10.1109/TCE.2009.5373774
https://doi.org/10.1109/TIP.2007.891067
https://doi.org/10.1007/11427445_110
https://doi.org/10.1016/j.aeue.2004.11.041


Mersin Photogrammetry Journal – 2023, 5(2), 67-74 

 

  74  

 

19. Çivicioğlu, P., Alçı, M., & Beṣdok, E. (2004). Using an 
exact radial basis function artificial neural network 
for impulsive noise suppression from highly distorted 
image databases. In International Conference on 
Advances in Information Systems, 383-391. 
https://doi.org/10.1007/978-3-540-30198-1_39 

20. Çivicioğlu, P., Alçı, M., & Beşdok, E. (2004). Impulsive 
noise suppression from images with the noise 
exclusive filter. EURASIP Journal on Advances in 
Signal Processing, 16, 2434–2440. 
https://doi.org/10.1155/S1110865704403151 

21. Çivicioğlu, P., & Alçı, M. (2004). Edge detection of 
highly distorted images suffering from impulsive 
noise. AEU-International Journal of Electronics and 
Communications, 58(6), 413-419. 
https://doi.org/10.1078/1434-8411-54100262 

22. Liu, B., Cao, J., Wang, W., Ma, N., Li, B., Liu, L., & Liu, X. 
(2018). Propagated mesh normal 
filtering. Computers & Graphics, 74, 119-125. 
https://doi.org/10.1016/j.cag.2018.05.003 

23. Zhang, W., Deng, B., Zhang, J., Bouaziz, S., & Liu, L. 
(2015). Guided mesh normal filtering. In Computer 
Graphics Forum, 34(7), 23-34. 
https://doi.org/10.1111/cgf.12742 

24. Wei, M., Yu, J., Pang, W. M., Wang, J., Qin, J., Liu, L., & 
Heng, P. A. (2014). Bi-normal filtering for mesh 
denoising. IEEE Transactions on Visualization and 
Computer Graphics, 21(1), 43-55. 
https://doi.org/10.1109/TVCG.2014.2326872 

25. Shen, J. G., Zhang, S. Y., Chen, Z. Y., Zhang, Y., & Ye, X. Z. 
(2009). Mesh sharpening via normal filtering. Journal 
of Zhejiang University-Science A, 10(4), 546-553. 
https://doi.org/10.1631/jzus.A0820505 

26. Mao, Z., Ma, L., Zhao, M., & Xiao, X. (2006). SUSAN 
structure preserving filtering for mesh denoising. The 
Visual Computer, 22, 276-284. 
https://doi.org/10.1007/s00371-006-0005-7 

27. Hou, Q., Bai, L., & Wang, Y. (2005). Mesh smoothing via 
adaptive bilateral filtering. In International 
Conference on Computational Science, 273-280. 
https://doi.org/10.1007/11428848_34 

28. Balan, R., & Taubin, G. (2000). 3d mesh geometry 
filtering algorithms for progressive transmission 
schemes. Computer-aided design, 32(13), 825-846. 
https://doi.org/10.1016/S0010-4485(00)00069-5 

29. Liu, S., Rho, S., Wang, R., & Jiang, F. (2018). Feature-
preserving mesh denoising based on guided normal 
filtering. Multimedia Tools and Applications, 77, 
23009-23021. https://doi.org/10.1007/s11042-
018-5735-9 

30. Zheng, Y., Fu, H., Au, O. K. C., & Tai, C. L. (2010). 
Bilateral normal filtering for mesh denoising. IEEE 
Transactions on Visualization and Computer 
Graphics, 17(10), 1521-1530. 
https://doi.org/10.1109/TVCG.2010.264 

31. Agathos, A., Azariadis, P., & Kyratzi, S. (2022). Elliptic 
Gabriel Taubin smoothing of point clouds. Computers 
& Graphics, 106, 20-32. 
https://doi.org/10.1016/j.cag.2022.05.009 

32. Nousias, S., Arvanitis, G., Lalos, A. S., & Moustakas, K. 
(2020). Fast mesh denoising with data driven normal 
filtering using deep variational autoencoders. IEEE 
Transactions on Industrial Informatics, 17(2), 980-
990. https://doi.org/10.1109/TII.2020.3000491 

33. Li, X., Li, R., Zhu, L., Fu, C. W., & Heng, P. A. (2020). DNF-
Net: A deep normal filtering network for mesh 
denoising. IEEE Transactions on Visualization and 
Computer Graphics, 27(10), 4060-4072. 
https://doi.org/10.1109/TVCG.2020.3001681 

34. Civicioglu, P. (2013). Backtracking search 
optimization algorithm for numerical optimization 
problems. Applied Mathematics and 
computation, 219(15), 8121-8144. 
https://doi.org/10.1016/j.amc.2013.02.017 

35. Civicioglu, P., & Besdok, E. (2019). Bernstain-search 
differential evolution algorithm for numerical 
function optimization. Expert Systems with 
Applications, 138, 112831. 
https://doi.org/10.1016/j.eswa.2019.112831 

36. Civicioglu, P., & Besdok, E. (2023). Bernstein-Levy 
differential evolution algorithm for numerical 
function optimization. Neural Computing and 
Applications, 35(9), 6603-6621. 
https://doi.org/10.1007/s00521-022-08013-7 

37. Civicioglu, P., Besdok, E., Gunen, M. A., & Atasever, U. 
H. (2020). Weighted differential evolution algorithm 
for numerical function optimization: a comparative 
study with cuckoo search, artificial bee colony, 
adaptive differential evolution, and backtracking 
search optimization algorithms. Neural Computing 
and Applications, 32, 3923-3937. 
https://doi.org/10.1007/s00521-018-3822-5 

 
 
 
 
 
 
 
 

 
 

 
© Author(s) 2023. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

 

https://doi.org/10.1007/978-3-540-30198-1_39
https://doi.org/10.1155/S1110865704403151
https://doi.org/10.1078/1434-8411-54100262
https://doi.org/10.1016/j.cag.2018.05.003
https://doi.org/10.1111/cgf.12742
https://doi.org/10.1109/TVCG.2014.2326872
https://doi.org/10.1631/jzus.A0820505
https://doi.org/10.1007/s00371-006-0005-7
https://doi.org/10.1007/11428848_34
https://doi.org/10.1016/S0010-4485(00)00069-5
https://doi.org/10.1007/s11042-018-5735-9
https://doi.org/10.1007/s11042-018-5735-9
https://doi.org/10.1109/TVCG.2010.264
https://doi.org/10.1016/j.cag.2022.05.009
https://doi.org/10.1109/TII.2020.3000491
https://doi.org/10.1109/TVCG.2020.3001681
https://doi.org/10.1016/j.amc.2013.02.017
https://doi.org/10.1016/j.eswa.2019.112831
https://doi.org/10.1007/s00521-022-08013-7
https://creativecommons.org/licenses/by-sa/4.0/

