
* Corresponding Author Cite this article

*(ebesdok@erciyes.edu.tr) ORCID ID 0000-0001-9309-375X
 (civici@erciyes.edu.tr) ORCID ID 0000-0003-1850-8489

Beşdok, E., & Civicioğlu, P. (2023). Analysing detail preserving capabilities of bilateral,
laplacian and taubin mesh filtering methods. Mersin Photogrammetry Journal, 5(2), 67-
74

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

Mersin Photogrammetry Journal

https://dergipark.org.tr/en/pub/mephoj

e-ISSN 2687-654X

Analysing detail preserving capabilities of bilateral, laplacian and taubin mesh filtering
methods

Erkan Besdok *1 , Pinar Civicioglu 2

1Erciyes University, Department of Geomatics Engineering, Türkiye
2Erciyes University, Department. of Aircraft Electrics and Electronics, Türkiye

Keywords Abstract
Mesh Filtering
Bilateral Filter
Laplacian Filter
Taubin Filter

 Mesh filtering of surfaces is crucial for noise reduction, feature preservation, and mesh
simplification in graphics, visualization, and computer vision. In this paper, the detail
preservation capacities of 3 frequently used filters, i.e., Bilateral, Laplacian, and Taubin
mesh filters, in mesh filtering have been thoroughly examined by experiments conducted
on 4 different test meshes. While the Bilateral filter excels in preserving sharp features due
to its integration of geometric proximity with intensity similarity, the Laplacian filter
prioritizes smoothness by averaging neighboring vertex positions, and the Taubin filter
offers a balanced approach by merging attributes of both Laplacian and high-pass filters.
The Bilateral filter's primary strength lies in its ability to maintain sharp features on a
mesh, ensuring that intricate details are preserved by considering both the spatial
closeness and intensity similarity of vertices. The Laplacian filter, although effective in
achieving mesh smoothness, has the propensity to excessively smooth out sharp and
defining features, potentially causing a loss of critical details in the processed mesh. The
Taubin filter integrates the best of both worlds, ensuring smoothness without excessive
mesh shrinkage; however, it might not excel in feature preservation as effectively as the
Bilateral filter or smooth as uniformly as the Laplacian filter, making it a middle-ground
option for certain applications. The statistical analysis of the experimental results has
shown that the Taubin method is statistically a more successful mesh filtering method for
the test sets used in this paper.

Research Article
DOI: 10.53093/mephoj.1349021

Received:24.08.2023
Revised: 09.09.2023
Accepted:25.09.2023
Published:17.10.2023

1. Introduction

Mesh surface filtering [1-7] is a pivotal process in the
domain of computer graphics and computational
geometry, aimed at enhancing the visual quality and
computational efficiency of three-dimensional (3D)
mesh models. A 3D mesh is a discrete representation of a
surface composed of vertices, edges, and faces. However,
due to various factors such as acquisition methods,
simplification techniques, or transmission limitations,
meshes often contain imperfections, noise, and artifacts
that can degrade their appearance and usability. Mesh
surface filtering [8-14], therefore, involves the
application of algorithms to refine and improve the
geometric and topological characteristics of mesh
surfaces.

The rationale behind filtering mesh surfaces resides
in the pursuit of producing visually pleasing and
physically plausible models for applications ranging
from video games and virtual reality to medical imaging

and architectural design. The overarching goal is to
mitigate undesired visual artifacts and irregularities that
might stem from processes like 3D scanning,
simplification, or transmission over networks. Filtering
not only enhances the aesthetics of rendered scenes but
also assists in downstream tasks such as mesh
compression, collision detection, and finite element
analysis.

Advantages of mesh filtering methods are manifold.
Firstly, they enable noise reduction [15-21], effectively
ameliorating the presence of outliers and spurious
geometries that could arise from sensor inaccuracies or
data corruption. Secondly, these methods can enhance
mesh coherency by addressing issues like cracks and
gaps between adjacent faces, thereby facilitating
smoother interactions during rendering and simulation.
Moreover, filtering contributes to the preservation of
salient features while attenuating superfluous details,
which proves invaluable in applications where

https://orcid.org/0000-0001-9309-375X
https://orcid.org/0000-0003-1850-8489
https://dergipark.org.tr/en/pub/mephoj
https://orcid.org/0000-0001-9309-375X
https://orcid.org/0000-0003-1850-8489
https://dergipark.org.tr/en/pub/mephoj/issue/80446/1349021

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 68

maintaining the fidelity of critical structures is essential.
Additionally, by optimizing the mesh representation [8,
22-25], computational overhead is reduced, enabling
real-time rendering and interaction even in resource-
constrained environments.

However, mesh filtering methods are not devoid of
limitations. One notable concern is the potential loss of
fine details during the filtering process, as aggressive
filtering can inadvertently erase intricate features that
are pertinent in certain applications. Furthermore, there
is an inherent trade-off between filtering strength and
computational cost; complex filtering algorithms may
demand significant processing power and memory
resources, impeding their applicability on low-end
devices. Selecting an appropriate filtering method and
parameter configuration can also be nontrivial,
necessitating domain expertise and iterative refinement.

In conclusion, mesh surface filtering constitutes a
vital facet of modern computer graphics, serving to
enhance visual quality, alleviate artifacts, and improve
computational efficiency in 3D mesh models. While its
advantages encompass noise reduction, coherency
enhancement, and feature preservation, caution must be
exercised to mitigate potential drawbacks such as detail
loss and computational overhead. The ongoing evolution
of filtering techniques continues to address these
challenges, contributing to the creation of compelling,
high-fidelity virtual environments and simulations
across diverse domains.

Mesh filtering methods [10, 26-28] have gained
considerable attention due to their applications in
graphics, computer vision, and geometric modelling.
These methods target the removal of noise, preservation
of salient features, and simplification of mesh structures.
One of the early and widely-adopted techniques is
Laplacian smoothing, which averages the positions of
neighbouring vertices, but it often over-smooths and may
degrade mesh quality. Bilateral mesh filtering [2, 5, 23,
29, 30] emerged as a promising alternative by combining
geometric closeness and intensity resemblance,
effectively preserving sharp features. However, its
computational expense has been a limitation for real-
time applications.

Taubin [31] introduced a method that leverages the
combination of low-pass and high-pass filters,
preventing mesh shrinkage observed in traditional
Laplacian approaches. Recently, non-local means and
anisotropic diffusion methods have been explored,
inspired by their success in image processing. These
methods consider wider neighbourhoods or adapt
filtering based on local mesh properties. Guided mesh
filtering, where the filter operation is guided by another
signal, has also shown promising results, especially in
texture and feature preservation. Wavelet-based
techniques, which decompose the mesh into frequency
bands, enable multi-resolution processing and have
applications in mesh compression.

Deep learning-based mesh filtering [32, 33], a
burgeoning area, employs neural networks to learn
optimal filtering parameters from data. While traditional
methods rely on hand-crafted heuristics, these learnable
filters adapt based on the input, making them versatile.
In conclusion, mesh filtering remains an active research

domain with methodologies ranging from classical
algorithms to modern machine learning approaches,
each with its own merits and challenges.

Bilateral mesh filtering maintains sharp features by
weighing both geometric proximity and feature
similarity, making it particularly suitable for preserving
edges but can be computationally intensive. On the other
hand, Laplacian filtering smoothens the surface by
averaging neighbouring vertices, which can lead to over-
smoothing of sharp details if not controlled properly. In
contrast, Taubin filtering employs a sequence of low-pass
and high-pass filters, ensuring effective smoothing
without causing the mesh to shrink, offering a balance
between detail preservation and noise reduction.

This paper presents experiments on the use of
Bilateral, Laplacian, and Taubin mesh filters in
photogrammetry and computer vision. These filters are
commonly used in these fields because they are effective
at smoothing meshes while preserving sharp features.

The rest of this paper is organized as follows: Section
2 introduces Mesh Filtering Methods. In Section 3,
Experiments are presented. In Section 4, Results and
Conclusions are given.

2. Mesh Filtering Methods

This section briefly presents the analytical structures,
basic features, advantages, and disadvantages of the
Bilateral, Laplacian, and Taubin filters used in the
Experiments section of this paper.

2.1. Bilateral Mesh Filtering

Bilateral mesh filtering is a method that applies
Bilateral filtering principles to 3D mesh data. It aims to
smooth the mesh while preserving important features
such as edges and corners. The filtering process takes
into account both geometric distance and attribute
similarity between vertices to determine the filtering
weights.

Given a mesh with vertices 𝑉 and faces 𝐹, the filtered
position 𝑝𝑖′ for vertex 𝑝𝑖 can be computed using Equation
1:

𝑝𝑖′ =
1

𝑊𝑖
∑𝑤𝑖𝑗

𝑁

𝑗=1

⋅ 𝑝𝑗 (1)

where, 𝑁 is the number of neighboring vertices of 𝑝𝑖 .

The 𝑝𝑗 represents the neighboring vertex positions. The

𝑤𝑖𝑗 is the Bilateral weight between vertices 𝑝𝑖 and 𝑝𝑗 .

𝑤𝑖𝑗 𝑖𝑠 the normalization term. The 𝑤𝑖𝑗 is computed as a

combination of spatial and range weights by using
Equation 2:

𝑤𝑖𝑗 = 𝑤𝑠(‖𝑝𝑖 − 𝑝𝑗‖) ⋅ 𝑤𝑟(𝑝𝑖 , 𝑝𝑗) (2)

where, 𝑤𝑠(‖𝑝𝑖 − 𝑝𝑗‖) is the spatial weight based on

the geometric distance between vertices 𝑝𝑖 and 𝑝𝑗 . The

𝑤𝑟(𝑝𝑖 , 𝑝𝑗) is the range weight based on attribute

similarity between vertices 𝑝𝑖 and 𝑝𝑗 . In this filter,

𝑤𝑠(‖𝑝𝑖 − 𝑝𝑗‖) and 𝑤𝑟(𝑝𝑖 , 𝑝𝑗) represent the spatial and

range weights, respectively. Bilateral mesh filter iterates

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 69

over each vertex in the mesh, computes the weighted
sum of neighboring vertex positions, and updates the
filtered position accordingly while considering
normalization. Pseudo-code of Bilateral mesh filter is
given in Figure 1.

Figure 1. Pseudo-code of Bilateral mesh filter.

Bilateral mesh filter offers several advantages that

make it a valuable technique for enhancing the visual
quality and preserving important features of 3D mesh
models:

Bilateral filtering is inherently designed to preserve
edges and boundaries within the data. This characteristic
is crucial for maintaining the sharpness and integrity of
important features in the mesh, such as edges, corners,
and creases. Unlike traditional smoothing methods that
tend to blur edges, bilateral filtering ensures that these
features remain well-defined. One of the strengths of
bilateral mesh filtering lies in its ability to take into
account attributes associated with vertices, such as
normal or colours. This enables the filtering process to
consider not only geometric proximity but also attribute
similarity when computing filtering weights. As a result,
attributes are preserved more effectively, contributing to
the overall visual fidelity of the mesh. Bilateral filtering
effectively reduces noise and small-scale irregularities
present in the mesh data. The incorporation of attribute-
based filtering helps distinguish between meaningful
variations and noise, allowing the method to selectively
smooth out noise while retaining genuine geometric and
attribute details.

Bilateral filtering is highly adaptable and can be
tailored to specific applications and requirements. By
adjusting the parameters of the spatial and range
weights, users can control the strength of the filtering
effect. This adaptability makes bilateral filtering suitable
for a wide range of scenarios, from artistic stylization to
scientific simulations. Unlike some traditional smoothing
methods that may result in blurring and distortion of
geometric details, bilateral filtering smooths the mesh
while preserving important features. This is particularly
advantageous for applications where maintaining the
integrity of the mesh's structural characteristics is
essential.

Bilateral filtering strikes a balance between noise
reduction and feature preservation. It selectively
smooths areas that are less critical while leaving
important features untouched. This characteristic is
particularly valuable for applications where a
compromise between overall smoothness and the
preservation of key details is required.

The advantages of bilateral mesh filtering extend
across various domains, including computer graphics,
medical imaging, computer-aided design, and more. It
finds applications in rendering, modelling, simulation,
and analysis, making it a versatile technique with wide-
ranging benefits. While more computationally intensive
methods may achieve better results, bilateral filtering
strikes a good balance between quality and efficiency. It
is often suitable for real-time or interactive applications,
offering an effective compromise between filtering
strength and computational complexity.

In summary, bilateral mesh filtering is advantageous
due to its ability to preserve edges, accommodate
attribute-based filtering, reduce noise, offer
customizable adjustments, and strike a balance between
feature preservation and smoothing. These advantages
make it a valuable tool for enhancing the visual quality
and fidelity of 3D mesh models across diverse
applications.

2.2. Laplacian Mesh Filtering

Laplacian Mesh Filtering is a widely used method for
mesh smoothing and denoising. It leverages the
Laplacian operator to iteratively update vertex positions
based on the local geometric information of
neighbouring vertices.

The Laplacian operator quantifies the difference
between a vertex and the average of its neighbours,
capturing the curvature and shape characteristics of the
mesh. Let's denote the Laplacian operator as 𝛥 and the
position of a vertex 𝑣𝑖 as 𝒑𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). The Laplacian
operator applied to the position of a vertex is defined in
Equation 3:

𝛥𝒑𝑖 =
1

|𝒩𝑖|
∑ (𝒑𝑗 − 𝒑𝑖)

𝑣𝑗∈𝒩𝑖

 (3)

where 𝒩𝑖 represents the set of neighboring vertices of

𝑣𝑖 .
The basic outline of the Laplacian Mesh Filtering

algorithm is given below:
1. Initialize: Given a mesh with vertices 𝒑𝑖 and

connectivity information.
2. Choose the number of iterations 𝑁.
3. For k = 1 to N:
 a. For each vertex 𝑣𝑖:
 i. Compute the Laplacian update: 𝛥𝒑𝑖 =

1

|𝒩𝑖|
∑ (𝒑𝑗 − 𝒑𝑖)𝑣𝑗∈𝒩𝑖

.

 ii. Update the vertex position: 𝒑𝑖
(𝑘)
= 𝒑𝑖

(𝑘−1)
+ 𝜆 ⋅

𝛥𝒑𝑖 ,

where 𝜆 is a user-defined weight controlling the step

size.
The Pseudo-code of Laplacian mesh filtering is given

in Figure 2.

In this pseudo-code, 𝒑𝑖
(𝑘)

represents the position of

vertex 𝑣𝑖 after 𝑘 iterations.
Laplacian Mesh Filtering iteratively adjusts vertex

positions, redistributing their positions based on the
average displacement of neighbouring vertices. This

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 70

process tends to smooth out noise and small-scale
irregularities in the mesh while preserving overall shape
characteristics. The parameter 𝜆 controls the extent of
the update and should be chosen carefully to achieve the
desired smoothing effect without causing over-
smoothing or distortion.

Figure 2. Pseudo-code of Laplacian mesh filtering.

The Laplacian Mesh Filtering method is conceptually
straightforward and easy to implement. It involves a
simple iterative process that updates vertex positions
based on the Laplacian operator, making it accessible to
both novice and experienced users.

Laplacian filtering tends to preserve local geometric
coherence. It smooths the mesh while maintaining the
overall shape characteristics and connectivity of the
original mesh. This makes it suitable for applications
where preserving essential features is important.

Laplacian filtering is effective in reducing noise and
small-scale irregularities in the mesh. By averaging
vertex positions with their neighbours, the method can
mitigate high-frequency noise that might be present due
to data acquisition or other factors. The filtering strength
can be controlled using the parameter 𝜆. Users can adjust
this parameter to achieve the desired level of smoothing.
This level of control is valuable when adapting the
filtering to different meshes and requirements.

While Laplacian filtering is efficient at smoothing, it
can inadvertently lead to detail loss, particularly in
regions with high curvature or intricate features. The
iterative nature of the algorithm tends to distribute
vertex positions toward an average, potentially
diminishing fine details. In some cases, Laplacian
filtering can introduce shape distortion, especially when
the smoothing process is too aggressive. This might
cause unintended changes in the mesh's shape that could
impact the overall visual quality or intended
characteristics of the model.

Laplacian filtering can lead to uneven smoothing,
where some parts of the mesh are smoothed more than
others. This is due to the reliance on local neighbourhood
information, which might not be uniform across the
entire mesh. The performance of Laplacian filtering is
highly dependent on the choice of the 𝜆 parameter.
Selecting an inappropriate value can lead to suboptimal
results, such as under-smoothing or over-smoothing. In
meshes with irregular connectivity or boundary
conditions, Laplacian filtering can sometimes introduce
artifacts like shrinkage or expansion of specific regions.
This is because the filtering process is sensitive to the
local vertex distribution and connectivity.

In summary, Laplacian Mesh Filtering offers a
straightforward approach to mesh smoothing with
advantages including simplicity, noise reduction, and
local coherence. However, it comes with the trade-offs of
potential detail loss, shape distortion, and sensitivity to

parameter choices. Users should carefully consider these
factors and their specific application requirements when
choosing Laplacian filtering as a mesh enhancement
technique.

2.3. Taubin Mesh Filtering

Taubin Mesh Filtering is a popular method for
smoothing and denoising 3D mesh surfaces. It was
introduced by Gabriel Taubin in 1995 as an iterative
technique that alternates between applying two distinct
filters: a Laplacian smoothing filter and a high-pass filter.
This approach effectively reduces noise while preserving
important features of the mesh.

Given a 3D mesh represented by vertices (𝒗𝑖) and
faces (𝒇𝑗) with associated normal (𝒏𝑖), the Laplacian

smoothing step can be represented by using Equation 4:

𝒗𝑖
(𝑘+1)

= 𝒗𝑖
(𝑘)
+ 𝜆1 ⋅ Laplacian(𝐯𝑖

(𝑘)
) (4)

where (𝜆1) is a user-defined parameter controlling

the amount of smoothing, and Laplacian(𝐯𝑖
(𝑘)
) computes

the Laplacian operator on vertex (𝒗𝑖) at iteration (𝑘).
The Laplacian operator measures the difference

between the vertex and the average of its neighbouring
vertices, thus smoothing out irregularities. Following the
Laplacian smoothing, the high-pass filter step is applied
using Equation 5:

𝒗𝑖
(𝑘+1)

= 𝒗𝑖
(𝑘+1)

− 𝜆2 ⋅ Laplacian(𝐯𝑖
(𝑘+1)

) (5)

Here, (𝜆2) is another user-defined parameter
controlling the amount of high-frequency detail
preservation. This step effectively compensates for the
excessive smoothing introduced by the previous step,
enhancing the overall fidelity of the filtered mesh.

The pseudo-code of Taubin Mesh Filtering method is
given in Figure 3.

Figure 3. Pseudo-code of Taubin mesh filtering.

This pseudo-code outlines the core steps of the
Taubin Mesh Filtering method, including Laplacian
computation and the iterative application of smoothing
and high-pass filtering. The parameters (𝜆1), (𝜆2), and
the number of iterations (𝐾) can be adjusted to achieve
the desired level of smoothing and detail preservation for
a given mesh.

The Taubin Mesh Filtering method offers several
advantages and drawbacks, making it an interesting
choice for mesh smoothing and denoising in certain
scenarios.

Taubin Mesh Filtering employs an iterative process
that alternates between Laplacian smoothing and high-

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 71

pass filtering. This approach allows for controlled
smoothing while preserving important geometric details.
The iterative nature enables users to fine-tune the degree
of filtering. The method is effective in reducing noise and
artifacts present in mesh data.

The Laplacian smoothing step averages vertex
positions, which helps in attenuating high-frequency
noise components, resulting in a smoother appearance.
The high pass filtering step counteracts excessive
smoothing introduced by the Laplacian operation. This
ensures that significant geometric features, such as edges
and corners, are better preserved compared to methods
that solely rely on simple smoothing techniques. The user
has control over two crucial parameters: (𝜆1) and (𝜆2).
These parameters influence the amount of smoothing
and detail preservation, allowing users to tailor the
filtering process to suit the specific characteristics of the
input mesh and the desired visual outcome. The method
is relatively computationally efficient due to its localized
nature. The Laplacian and high pass filtering operations
involve neighbouring vertices, making them amenable to
parallelization and optimization techniques.

Depending on the chosen parameter values and the
number of iterations, aggressive smoothing may result in
the loss of fine geometric details. While the high pass
filter aims to mitigate this, there can still be instances
where essential details are inadvertently smoothed out.

The effectiveness of the Taubin method is closely tied
to parameter settings. Selecting appropriate values for
(𝜆1) and (𝜆2) is not always straightforward, and finding
the right balance between smoothing and preserving
details requires experimentation. In certain cases,
excessive filtering iterations can lead to mesh distortion.
Particularly, regions with high curvature might exhibit
undesirable artifacts due to the iterative nature of the
smoothing process.

The Taubin method's effectiveness diminishes in
cases where the input mesh has highly irregular or noisy
features. For instance, when the noise levels are
extremely high or the mesh lacks clear geometric
structure, the method might struggle to achieve
satisfactory results. Despite its advantages, Taubin Mesh
Filtering may necessitate manual intervention to achieve
optimal results. Users might need to fine-tune
parameters and conduct iterative trials to strike a
balance between smoothing and feature preservation.

In conclusion, the Taubin Mesh Filtering method is a
versatile approach for smoothing and denoising 3D mesh
surfaces. Its iterative nature and parameter control offer
flexibility in achieving varying degrees of noise reduction
and detail preservation. However, careful consideration
of parameter settings and an understanding of its
limitations are essential to ensure effective application
and avoid unintended consequences such as detail loss or
mesh distortion.

3. Experiments

In the experiments, 4 different meshes were used:
“David” (Figure 4A), “Roma” (Figure 4B), “Man”
(Figure 5A), and “Girl” (Figure 5B).

The “David” test mesh has 72,685 faces, and 36,714
vertices. The “Roma” test mesh consists of 55,847 faces,

and 28,254 vertices. The “Man” test mesh contains
30,000 faces, and 15,258 vertices. The “Girl” test mesh
has 6,999 faces, and 3,658 vertices. The spatial
coordinates of the related mesh’s are given in centimetre.
The spatial boundaries for the "Man" are given as: 150 ≤
𝑥 ≤ 200, 3.77 ≤ 𝑦 ≤ 43.32, 𝑎𝑛𝑑 2.23 ≤ 𝑧 ≤ 67.39. The
spatial boundaries for the "Roma" are given as: 100 ≤
𝑥 ≤ 200, 110.31 ≤ 𝑦 ≤ 165.95, 𝑎𝑛𝑑 204.33 ≤ 𝑧 ≤
295.11. The spatial boundaries for the "David" are given
as: 100 ≤ 𝑥 ≤ 200, 75 ≤ 𝑦 ≤ 150, 100 ≤ 𝑧 ≤ 200. The
spatial boundaries for the "Girl" are given as: 100 ≤ 𝑥 ≤
200, 84.14 ≤ 𝑦 ≤ 170.63, 𝑎𝑛𝑑 56.29 ≤ 𝑧 ≤ 210.63.

Corrupted meshes are generated by adding random
valued uniform impulsive noise to the vertex positions of
the original meshes. The vertex positions of the
generated corrupted meshes are repaired by optimizing
the internal parameters of the filters used in the
experiments.

The optimal values for the related threshold
parameters of Bilateral, Laplacian, and Taubin filters
have been optimized using the BSA algorithm [34-37].
Taubin filter is applied to related meshes using 5
iterations. BSA is a very powerful, non-recursive,
iterative evolutionary search method developed by
Çivicioğlu [34]. Evolutionary search algorithms are very
popular because they produce useful results in the
optimization of non-differentiable, multimodal, and
continuous numerical problems. For BSA, the size of the
population is set to 20, and the maximum number of
iterations is empirically chosen as 100,000. The search
space lower and upper bound values have been
determined as [low=0; up=1] only for the first iteration.
In the following iterations, BSA employed the unbounded
search method to obtain the optimum values for the
related filters.

The objective function used for BSA is given in
Equation 6:

𝑎𝑟𝑔𝑚𝑖𝑛⏟
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟

|𝐶𝑀𝑒𝑠ℎ𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑂𝑀𝑒𝑠ℎ| (6)

where 𝐶𝑀𝑒𝑠ℎ𝐹𝑖𝑙𝑡𝑒𝑟 , and 𝑂𝑀𝑒𝑠ℎ denote response of

the filter used in the current experiment, and original
mesh, respectively.

All the filtering methods used in the Experiments
were implemented in MATLAB. The Experiments were
conducted by using a computer with Intel(R) Xeon(R)
CPU E5-2650 v2 @ 2.60GHz 2.60 GHz (2 CPU), 64GB
RAM.

Table 1 shows the ‘Mean Square Error’’ values
calculated between the meshes obtained from the
experiments and the original mesh. When Table 1 is
examined, it is seen that the Taubin method is relatively
more successful in filtering out the relevant data.

Table 1. ‘Mean Square Error’ values computed between
filtered and original mesh.

Test Set Noisy
Filtering Methods

Bilateral
Filer

Laplacian Taubin

David 0.0837 0.0417 0.0215 0.0108
Roma 0.0954 0.0567 0.0349 0.0181
Man 0.1054 0.0600 0.0381 0.0270
Girl 0.0910 0.0580 0.0276 0.0198

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 72

Figure 4. The mesh surface without texture for (a) Original, (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e)
Taubin are illustrated in rows A#1, and B#1. The normalized- displacement values superimposed on the related mesh
surfaces as texture for (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e) Taubin are illustrated in rows A#2,

and B#2.

Figure 5. The mesh surface without texture for (a) Original, (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e)
Taubin are illustrated in rows C#1, and D#1. The normalized-displacement values superimposed on the related mesh
surfaces as texture for (b) Corrupted, (c) Bilateral Filtering, (d) Laplacian, and (e) Taubin are illustrated in rows C#2,

and D#2.

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 73

The meshes produced by the relevant filters at the
end of the experiments are shown in Figure 4 and Figure
5. Column (a) of Figure 4 and Figure 5 shows the original
mesh surface. Column (b) of Figure 4 and Figure 5 shows
the corrupted mesh with random valued uniform
impulsive noise, where noise ~ U [- 0.50; 0.50] as cm.,
and U denotes continuous uniform distribution.

4. Results and Conclusion

In this paper, the detail preservation capabilities of
Bilateral, Laplacian, and Taubin mesh filtering methods
have been examined in detail using 4 test sets. The
Bilateral filter has a relatively more complex analytical
structure compared to the Laplacian, and Taubin filters.
Taubin filtering is relatively more successful in
preventing deformation on the mesh. In concave and
convex areas, Laplacian, and Taubin tend to preserve
mesh details relatively better. The Bilateral filter causes
a partial over-smoothing effect on the edge areas. In
contrast, visually, the Bilateral filter tends to produce
more continuous surface data. The Laplacian method has
caused a partial over-sharp effect on the edge areas.
Although the results obtained from the study suggest
that the success of the mesh filter is somewhat data-
dependent, it has been observed that the Taubin method
is more successful in detail preservation compared to
other methods used in the experiments.

Author contributions

Erkan Beşdok: Data curation, Software, Validation.
Pınar Çivicioğlu: Conceptualization, Methodology,
Software, Writing, Editing

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Liu, Y., Coombes, M., & Liu, C. (2023). Mesh-based
consensus distributed particle filtering for sensor
networks. IEEE Transactions on Signal and
Information Processing over Networks, 9, 346-356.
https://doi.org/10.1109/TSIPN.2023.3278469

2. Liu, B., Li, B., Cao, J., Wang, W., & Liu, X. (2023).
Adaptive and propagated mesh filtering. Computer-
Aided Design, 154, 103422.
https://doi.org/10.1016/j.cad.2022.103422

3. Fábián, G. (2023). Generalized Savitzky–Golay filter
for smoothing triangular meshes. Computer Aided
Geometric Design, 100, 102167.
https://doi.org/10.1016/j.cagd.2022.102167

4. Han, H. D., & Han, J. K. (2022). Modified bilateral filter
for feature enhancement in mesh denoising. IEEE
Access, 10, 56845-56862.
https://doi.org/10.1109/ACCESS.2022.3176961

5. Zhong, S., Song, Z., Liu, Z., Xie, Z., Chen, J., Liu, L., &
Chen, R. (2021). Shape-aware mesh normal
filtering. Computer-Aided Design, 140, 103088.
https://doi.org/10.1016/j.cad.2021.103088

6. Zhao, W., Liu, X., Wang, S., Fan, X., & Zhao, D. (2019).
Graph-based feature-preserving mesh normal
filtering. IEEE Transactions on Visualization and
Computer Graphics, 27(3), 1937-1952.
https://do.iorg/10.1109/TVCG.2019.2944357

7. Zhang, J., Deng, B., Hong, Y., Peng, Y., Qin, W., & Liu, L.
(2018). Static/dynamic filtering for mesh
geometry. IEEE transactions on visualization and
computer graphics, 25(4), 1774-1787.
https://do.org/10.1109/TVCG.2018.2816926

8. Noel, G., Djouani, K., Van Wyk, B., & Hamam, Y. (2012).
Bilateral mesh filtering. Pattern Recognition
Letters, 33(9), 1101-1107.
https://doi.org/10.1016/j.patrec.2012.02.008

9. Loménie, N., & Stamon, G. (2008). Morphological
mesh filtering and α-objects. Pattern Recognition
Letters, 29(10), 1571-1579.
https://doi.org/10.1016/j.patrec.2008.03.019

10. Kim, B., & Rossignac, J. (2005). Geofilter: Geometric
selection of mesh filter parameters. In Computer
Graphics Forum, 24(3), 295-302.

11. Leipoldt, K. J., Happich, T., Kreysa, E., & Gemünd, H. P.
(1991). Scattering matrix methods for far-infrared
metal mesh filters. International Journal of Infrared
and Millimeter Waves, 12, 263-274.
https://doi.org/10.1007/BF01010300

12. Chen, P. A. (1987). The performance of dielectric
coated mesh filter. International Journal of Infrared
and Millimeter Waves, 8, 29-33.
https://doi.org/10.1007/BF01010643

13. Byrne, D. M., Brouns, A. J., Case, F. C., Tiberio, R. C.,
Whitehead, B. L., & Wolf, E. D. (1985). Infrared mesh
filters fabricated by electron‐beam
lithography. Journal of Vacuum Science & Technology
B: Microelectronics Processing and Phenomena, 3(1),
268-271. https://doi.org/10.1116/1.583243

14. Byrne, D. M., Brouns, A. J., & Case, F. C. (1984). Infrared
mesh filters (A). Journal of the Optical Society of
America A, 1, 1330.

15. Civicioglu, P. (2009). Removal of random-valued
impulsive noise from corrupted images. IEEE
Transactions on Consumer Electronics, 55(4), 2097-
2104. https://do.org/10.1109/TCE.2009.5373774

16. Civicioglu, P. (2007). Using uncorrupted
neighborhoods of the pixels for impulsive noise
suppression with ANFIS. IEEE Transactions on Image
Processing, 16(3), 759-773.
https://doi.org/10.1109/TIP.2007.891067

17. Çivicioğlu, P. (2005). Using LM artificial neural
networks and η-closest-pixels for impulsive noise
suppression from highly corrupted images.
In International Symposium on Neural Networks (pp.
679-684). https://doi.org/10.1007/11427445_110

18. Beşdok, E., Çivicioğlu, P., & Alçı, M. (2005). Using Anfis
with circular polygons for impulsive noise
suppression from highly distorted images. AEU-
International Journal of Electronics and
Communications, 59(4), 213-221.
https://doi.org/10.1016/j.aeue.2004.11.041

https://doi.org/10.1109/TSIPN.2023.3278469
https://doi.org/10.1016/j.cad.2022.103422
https://doi.org/10.1016/j.cagd.2022.102167
https://doi.org/10.1109/ACCESS.2022.3176961
https://doi.org/10.1016/j.cad.2021.103088
https://doi.org/10.1109/TVCG.2019.2944357
https://doi.org/10.1109/TVCG.2018.2816926
https://doi.org/10.1016/j.patrec.2012.02.008
https://doi.org/10.1016/j.patrec.2008.03.019
https://doi.org/10.1007/BF01010300
https://doi.org/10.1007/BF01010643
https://doi.org/10.1116/1.583243
https://doi.org/10.1109/TCE.2009.5373774
https://doi.org/10.1109/TIP.2007.891067
https://doi.org/10.1007/11427445_110
https://doi.org/10.1016/j.aeue.2004.11.041

Mersin Photogrammetry Journal – 2023, 5(2), 67-74

 74

19. Çivicioğlu, P., Alçı, M., & Beṣdok, E. (2004). Using an
exact radial basis function artificial neural network
for impulsive noise suppression from highly distorted
image databases. In International Conference on
Advances in Information Systems, 383-391.
https://doi.org/10.1007/978-3-540-30198-1_39

20. Çivicioğlu, P., Alçı, M., & Beşdok, E. (2004). Impulsive
noise suppression from images with the noise
exclusive filter. EURASIP Journal on Advances in
Signal Processing, 16, 2434–2440.
https://doi.org/10.1155/S1110865704403151

21. Çivicioğlu, P., & Alçı, M. (2004). Edge detection of
highly distorted images suffering from impulsive
noise. AEU-International Journal of Electronics and
Communications, 58(6), 413-419.
https://doi.org/10.1078/1434-8411-54100262

22. Liu, B., Cao, J., Wang, W., Ma, N., Li, B., Liu, L., & Liu, X.
(2018). Propagated mesh normal
filtering. Computers & Graphics, 74, 119-125.
https://doi.org/10.1016/j.cag.2018.05.003

23. Zhang, W., Deng, B., Zhang, J., Bouaziz, S., & Liu, L.
(2015). Guided mesh normal filtering. In Computer
Graphics Forum, 34(7), 23-34.
https://doi.org/10.1111/cgf.12742

24. Wei, M., Yu, J., Pang, W. M., Wang, J., Qin, J., Liu, L., &
Heng, P. A. (2014). Bi-normal filtering for mesh
denoising. IEEE Transactions on Visualization and
Computer Graphics, 21(1), 43-55.
https://doi.org/10.1109/TVCG.2014.2326872

25. Shen, J. G., Zhang, S. Y., Chen, Z. Y., Zhang, Y., & Ye, X. Z.
(2009). Mesh sharpening via normal filtering. Journal
of Zhejiang University-Science A, 10(4), 546-553.
https://doi.org/10.1631/jzus.A0820505

26. Mao, Z., Ma, L., Zhao, M., & Xiao, X. (2006). SUSAN
structure preserving filtering for mesh denoising. The
Visual Computer, 22, 276-284.
https://doi.org/10.1007/s00371-006-0005-7

27. Hou, Q., Bai, L., & Wang, Y. (2005). Mesh smoothing via
adaptive bilateral filtering. In International
Conference on Computational Science, 273-280.
https://doi.org/10.1007/11428848_34

28. Balan, R., & Taubin, G. (2000). 3d mesh geometry
filtering algorithms for progressive transmission
schemes. Computer-aided design, 32(13), 825-846.
https://doi.org/10.1016/S0010-4485(00)00069-5

29. Liu, S., Rho, S., Wang, R., & Jiang, F. (2018). Feature-
preserving mesh denoising based on guided normal
filtering. Multimedia Tools and Applications, 77,
23009-23021. https://doi.org/10.1007/s11042-
018-5735-9

30. Zheng, Y., Fu, H., Au, O. K. C., & Tai, C. L. (2010).
Bilateral normal filtering for mesh denoising. IEEE
Transactions on Visualization and Computer
Graphics, 17(10), 1521-1530.
https://doi.org/10.1109/TVCG.2010.264

31. Agathos, A., Azariadis, P., & Kyratzi, S. (2022). Elliptic
Gabriel Taubin smoothing of point clouds. Computers
& Graphics, 106, 20-32.
https://doi.org/10.1016/j.cag.2022.05.009

32. Nousias, S., Arvanitis, G., Lalos, A. S., & Moustakas, K.
(2020). Fast mesh denoising with data driven normal
filtering using deep variational autoencoders. IEEE
Transactions on Industrial Informatics, 17(2), 980-
990. https://doi.org/10.1109/TII.2020.3000491

33. Li, X., Li, R., Zhu, L., Fu, C. W., & Heng, P. A. (2020). DNF-
Net: A deep normal filtering network for mesh
denoising. IEEE Transactions on Visualization and
Computer Graphics, 27(10), 4060-4072.
https://doi.org/10.1109/TVCG.2020.3001681

34. Civicioglu, P. (2013). Backtracking search
optimization algorithm for numerical optimization
problems. Applied Mathematics and
computation, 219(15), 8121-8144.
https://doi.org/10.1016/j.amc.2013.02.017

35. Civicioglu, P., & Besdok, E. (2019). Bernstain-search
differential evolution algorithm for numerical
function optimization. Expert Systems with
Applications, 138, 112831.
https://doi.org/10.1016/j.eswa.2019.112831

36. Civicioglu, P., & Besdok, E. (2023). Bernstein-Levy
differential evolution algorithm for numerical
function optimization. Neural Computing and
Applications, 35(9), 6603-6621.
https://doi.org/10.1007/s00521-022-08013-7

37. Civicioglu, P., Besdok, E., Gunen, M. A., & Atasever, U.
H. (2020). Weighted differential evolution algorithm
for numerical function optimization: a comparative
study with cuckoo search, artificial bee colony,
adaptive differential evolution, and backtracking
search optimization algorithms. Neural Computing
and Applications, 32, 3923-3937.
https://doi.org/10.1007/s00521-018-3822-5

© Author(s) 2023. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://doi.org/10.1007/978-3-540-30198-1_39
https://doi.org/10.1155/S1110865704403151
https://doi.org/10.1078/1434-8411-54100262
https://doi.org/10.1016/j.cag.2018.05.003
https://doi.org/10.1111/cgf.12742
https://doi.org/10.1109/TVCG.2014.2326872
https://doi.org/10.1631/jzus.A0820505
https://doi.org/10.1007/s00371-006-0005-7
https://doi.org/10.1007/11428848_34
https://doi.org/10.1016/S0010-4485(00)00069-5
https://doi.org/10.1007/s11042-018-5735-9
https://doi.org/10.1007/s11042-018-5735-9
https://doi.org/10.1109/TVCG.2010.264
https://doi.org/10.1016/j.cag.2022.05.009
https://doi.org/10.1109/TII.2020.3000491
https://doi.org/10.1109/TVCG.2020.3001681
https://doi.org/10.1016/j.amc.2013.02.017
https://doi.org/10.1016/j.eswa.2019.112831
https://doi.org/10.1007/s00521-022-08013-7
https://creativecommons.org/licenses/by-sa/4.0/

