
Turkish Journal of Science & Technology                    Research Paper                                                                                                                            
19(1), 279-294, 2024                                                                                                                                   https://doi.org/10.55525/tjst.1428424 

 
Comparative Analysis of Wavelet Families in Image Compression, Featuring the Proposed 

New Wavelet  

İbrahim ÖZ1* 
1 Ankara Yıldırım Beyazıt Üniversitesi, TTO, Ayvalı Mah.  Ankara, Türkiye 

*1 ibrahimoz@gazi.edu.tr 

 (Geliş/Received: 30/01/2024;                                                                               Kabul/Accepted: 28/03/2024) 
 

Abstract: Image compression is fundamental to the efficient and cost-effective use of digital media, including but not limited 
to medical imagery, satellite images, and daily photography. Wavelet transform is one of the best methods used in compression. 
This study conducts a meticulous comparative analysis of various established wavelet families and introduces a novel wavelet 
named new wavelet for image compression (NWI), shedding light on its performance compared to well-established 
counterparts. This research conducts a meticulous comparative analysis of various wavelet families to assess their performance 
in image compression. The results show that an average compression ratio of around 75% can be achieved with a 38 dB PSNR 
value for all test images. The best result was achieved with the test-2 image, with a compression performance (CP) of 3312.08, 
using the proposed NWI wavelet. The research evaluates eight wavelet families and shows that the performance of image 
compression depends on both image type and selected wavelet family while keeping the coding algorithm the same for all 
calculations of image processing scenarios. In image compression, introducing new wavelet families, such as the NWI, can 
enhance performance and achieve better results.  
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Görüntü Sıkıştırmada Dalgacık Ailelerinin Karşılaştırmalı Analizi ve Yeni bir Dalgacık Ailesi 
Önerisi 

 
Öz: Görüntü sıkıştırma, tıbbi görüntülerden uydu görüntülerine ve günlük fotoğrafçılığa kadar dijital medyanın verimli ve 
maliyet etkili kullanımı için temel bir gerekliliktir. Dalgacık dönüşümü, görüntü sıkıştırmada kullanılan en iyi yöntemlerden 
biridir. Bu araştırma, en çok bilinen dalgacık ailelerinin görüntü sıkıştırma performansını çeşitli analizlerle değerlendirmiştir. 
İlave olarak nwi adlı yeni bir dalgacık ailesi üretilmiş ve performansı bilinen dalgacık aileleri ile karşılaştırılmıştır. Sıkıştırma 
Oranı (CR) ve Tepe Sinyal-Gürültü Oranı (PSNR) gibi nicel ölçüleri kullanarak, tablolar ve şekillerde sunulan sonuçlar, farklı 
dalgacık dönüşümlerinin performansını göstermektedir. Sonuçlar, tüm test görüntüleri için ortalama %75 sıkıştırma oranının 
38 dB PSNR değeri ile elde edilebileceğini göstermektedir. En iyi sonuç, önerilen NWI dalgacığı ile test-2 görüntüsünde 
sıkıştırma performansı (CP) 3312,08 değeri ile elde edilmiştir. Bu çalışmada, sekiz dalgacık ailesi değerlendirilmekte ve 
görüntü sıkıştırma performansının hem görüntü türüne hem de seçilen dalgacık ailesine bağlı olduğu sonucu çıkmaktadır. 
Kodlama algoritması tüm dalgacık aileleri için aynı tutularak sadece dalgacık dönüşüm performansı analiz edilmiştir. Görüntü 
sıkıştırmada yeni ve etkili dalgacık ailelerinin gerçekleştirilebileceği NWI önerisinde olduğu gibi gösterilmiştir. 
 
Anahtar kelimeler: Dalgacık, görüntü sıkıştırma, sıkıştırma oranı, sinyal gürültü oranı. 
 
1. Introduction 
 

The ubiquity of digital images in various domains, including social media platforms, satellite imagery, and 
medical imaging, has led to a surge in daily usage. However, the storage and transmission of uncompressed 
multimedia data, encompassing videos, photos, graphics, and audio, pose challenges due to their substantial space 
and bandwidth requirements. Efficient systems with sufficient memory and robust processors are essential for 
handling the storage and processing demands associated with such unprocessed data. 

Both moving and still images are frequently broadcasted for human consumption. During viewing, 
imperceptible details can be selectively removed from storage to mitigate data size and reduce transmission 
bandwidth while maintaining a predefined image quality threshold. 

Compression is pivotal in addressing these challenges, allowing videos and images to occupy less storage 
space and utilize minimal bandwidth during transmission without compromising perceptible image quality. Raw 
images generated by contemporary digital devices exhibit considerable data size and transmission rates. For 
instance, in high-definition image systems like HD (1920x1080 pixels), a standard image requires a 16.5 Mbyte 
file size. In more advanced systems such as 4KHD (3840x2160 pixels), this requirement escalates to 66 Mbyte. 

The transmission and storage of image signals at exceedingly high data rates pose practical challenges. 
Consequently, the most viable solution is to employ compression techniques to reduce the file size and data rate 
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to manageable levels. Digital images are compressed by removing redundant information, with three primary types 
of redundancy addressed [1]. Spatial Redundancy: In natural images, neighboring pixels often exhibit very close 
values. As a result, identical pixels are not individually coded; instead, the information that they share the same 
value is stored. The focus is on preserving the different information between closely located pixels, minimizing 
the need for redundant coding. Temporal Redundancy: In video sequences, successive frames typically have 
minimal changes. Regions of the frame that remain unchanged over time contribute to temporal redundancy. The 
information indicating that these areas are consistent with the previous frame is stored to optimize storage and 
transmission. Temporal redundancy reduction is particularly crucial in video compression scenarios. Spectral 
Redundancy: Image portions divided into frequency bands exhibit spectral values of closely located pixels that are 
very similar. These subtle details, often imperceptible to the human eye, are discarded. By doing so, the method 
efficiently eliminates spectral redundancy, preventing the unnecessary repetition of similar information and 
effectively shortening the data series representing the image information [2]. 

These redundancy reduction methods collectively contribute to a streamlined representation of image data, 
ensuring more efficient transmission and storage without compromising essential visual information. 

The Discrete Wavelet Transform (DWT) is a widely utilized signal and image analysis tool. It dissects data 
into approximation and detail coefficients using filters, capturing localized and overall variations. The hierarchical 
decomposition facilitated by DWT allows for efficient data representation and compression. This transformative 
method finds applications in diverse fields, such as compression, noise removal, and feature extraction. Despite 
its proficiency in preserving crucial details, it is essential to note that DWT may introduce blocking artifacts and 
possess higher computational complexity when compared to simpler transforms [3]. 

Signal processing has seen a burgeoning interest in wavelets and wavelet transforms, marking a significant 
area of research. Their applications, especially in the 2D Discrete Wavelet Transform (DWT) context, have 
become pivotal in multimedia applications such as JPEG2000 and MPEG-4 standards, multimedia information 
recovery systems, and digital watermarking. The discrete mayor wavelet demonstrates remarkable effectiveness 
in image deblurring. Biorthogonal wavelets have been proposed to expedite the processing of geometric models, 
while the Fejer-korovkin wavelet exhibits a commendable response in human noise identification within 
multimedia applications. A novel method for enhancing image contrast, termed low dynamic range histogram 
equalization (LDR-HE), is introduced. This method relies on the Quantized Discrete Haar Wavelet Transform 
(HWT) in the frequency domain [4].  

In addressing the challenges associated with separating noise from partial discharge signals, efforts have been 
directed towards Fourier transform, applied in the frequency or time domains. However, inherent limitations arise, 
as acquiring information from both time and frequency domains simultaneously proves elusive. To overcome these 
challenges, researchers have turned to coiflet and symlet wavelet transformations. 

While the 2D DWT plays a pivotal role in multimedia applications, it comes with computational complexity, 
especially compared to other functions like those in the JPEG2000 standard. Consequently, many architectures 
have been proposed to process 2D DWT efficiently. Its application extends to enhanced ultrasonic flaw detection, 
and innovative structures, such as a memory-efficient 2D DWT for JPEG2000, have been put forth. This proposed 
structure involves a 1D column processor, internal memory, and a 1D row processor, with a primary advantage 
being reducing memory requirements [5].  

There are numerous fields where wavelet applications find relevance, and authors have introduced various 
image compression techniques. These contributions have been published and shared within the academic 
community and among professionals. 

By harnessing influential frequency bands through wavelet transform and selecting high-performance 
features, it is possible to detect faults in power transmission lines using ensemble learning, specifically addressing 
discharge faults [6]. The application of wavelet transform can be employed to address the challenge of eliminating 
noise arising from abrupt changes in very low frequency (VLF) signals utilized in remote sensing, which is 
particularly crucial for the detection of sub-ionospheric events. In industrial applications, specifically 
asynchronous motors, misalignment faults, including issues like loose connections and angular imbalances, can be 
effectively analyzed using Wavelet, transform [7].  

Efficient storage and transmission of medical images are pivotal in telemedicine. The application of wavelet 
transform proves instrumental in achieving near-lossless compression in medical image data [8]. Utilizing wavelet 
transform and machine learning techniques, it is feasible to classify individuals into categories of colon cancer 
patients and healthy subjects based on signal analysis. [9]. The method accurately classifies colon cancer patients, 
providing a robust methodology for distinguishing between health conditions. 

Efficient and cost-effective utilization of digital medical imaging in applications like teleradiology and 
Picture Archiving and Communication Systems (PACS) necessitates advanced image compression techniques. In 
a comparative study between JPEG and Wavelet compression, the Wavelet Compression Engine and JPEG Wizard 
tools were employed to compress and decompress a digitized chest X-ray image at various ratios. Wavelet 
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compression demonstrated lower error matrices and higher peak signal-to-noise ratios, with no significant 
differences in diagnostic accuracy up to 30:1 compression ratios. Visual comparisons confirmed minimal image 
degradation, and the wavelet algorithm achieved an impressive compression ratio of up to 600:1. [10]. The 
Wavelet-Based Deep Auto Encoder-Decoder Network (WDAED) for image compression addresses various 
frequency components in images. The proposed approach incorporates Wavelet transform pre-processing and a 
deep super-resolution network in the decoder for improved decompression quality. The algorithm is tested on 
various datasets, demonstrating superior compression performance across multiple evaluation metrics. [11]. An 
enhanced algorithm for image compression based on wavelet properties, specifically targeting detail subbands 
(Diagonal, Vertical, and Horizontal), is analyzed by hard thresholding. Using the standard deviation concept, the 
proposed algorithm estimates an optimal threshold value for each detail subband. The experiment results 
demonstrate the algorithm's effectiveness in removing unnecessary wavelet coefficients without compromising 
image quality. This leads to increased compression ratios and reduced elapsed time, showcasing the potential of 
the proposed approach. A novel method for enhancing image contrast, termed low dynamic range histogram 
equalization (LDR-HE), is introduced. This method relies on the Quantized Discrete Haar Wavelet Transform 
(HWT) in the frequency domain [12]. 

Investigations are conducted using a hybrid transform for lossless image compression, combining the discrete 
wavelet transform (DWT) with prediction. The approach involves reversible denoising and lifting steps (RDLSs) 
with step skipping, applied in an image-adaptive manner using heuristics and entropy estimation. The research 
demonstrates the effectiveness of combining DWT with prediction, achieving notable compression ratio 
improvements over JPEG 2000. The study presents practical compression schemes with various trade-offs, 
providing valuable insights for optimizing compression methods. [13]. Exploring the use of 2-D multiple-level 
discrete Wavelet transform for image compression shows that after obtaining approximation and detail coefficients 
through multiple-level Wavelet transform, the superior compression performance of wavelet-based methods 
compared to other compression techniques was achieved. [14]. 

Transform coding, especially the Discrete Wavelet Transform (DWT), stands out among effective lossy 
compression methods. Wavelet-based image coding schemes, including transformation, quantization, and coding, 
delve into the principles of popular schemes like EZW, SPIHT, SPECK, and EBCOT, comparing their advantages 
and shortcomings. Designing efficient codecs for wavelet image compression, incorporating spline transform and 
improved coding schemes. [15]. 

To address the increasing demand for faster encoding and decoding, researchers proposed an image 
compression algorithm that combines 2D DWT, PCA, and canonical Huffman coding (CHC). The hybrid 
compression model achieves up to 60% compression while maintaining high visual quality. Their proposed method 
effectively utilizes storage space in the growing image data usage era. [16]. 

The application of two-dimensional discrete wavelet transform (2D DWT) in the compression of both video 
and still images has been explored, employing innovative compression techniques such as PAQ. The outcomes of 
this investigation demonstrate that these methods are successful and practical in their applicability [2]. 

The Huffman coding algorithm compresses and decomposes images by incorporating the Discrete Wavelet 
Transform. The approach decomposes the image into distinct sets of signals encoded into a bit stream, resulting in 
improved compression. The proposed algorithm surpasses other techniques in compression ratio, compression 
time, and bits per pixel. [17]. 

The critical challenge of signal identification under uncertainty, focusing on filtering and compression using 
the Discrete Wavelet Transform (DWT), was analyzed in a separate study. The method involved a comparison of 
the proximity of a one-dimensional series of wavelet coefficients, providing a robust solution. The results 
underscored wavelets' effectiveness in signal identification and compression, contributing substantially to the 
existing literature [18]. 

In another study, innovative image compression techniques are introduced, employing multiwavelets and 
multiwavelet packets. The research addresses limitations in existing wavelet filters, exploring multiwavelets to 
provide more design options and combine desirable transform features. Experimental results showcase the superior 
performance of these techniques, either matching or surpassing current wavelet filters. This research contributes 
to advancing image compression standards and offers valuable insights for future optimization [19]. 

A researcher introduces a novel approach to image compression utilizing subspace techniques and 
downsampling. The methodology begins by reducing the size of the image through downsampling. Subsequently, 
the Karhunen-Loeve transform (KLT) is employed on the downscaled image to generate a series of transform 
coefficients [20]. Another study delves into the efficacy of subspace-driven coding methodologies in the context 
of compression [21]. Another researcher analyzes different Wavelet transforms. The evaluation involves assessing 
performance using Peak Signal-to-Noise Ratio (PSNR) and Mean Square Error (MSE). The results highlight 
differences among wavelet families [22]. 
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A researcher evaluated various wavelet difference reduction (WDR) methods, focusing on their image 
compression and transmission performance. WDR demonstrates coding gains compared to traditional coding 
approaches, emphasizing the convenience and superiority of modified WDR methods for diverse applications [23]. 

 This study centers around the comprehensive exploration of various wavelet families to evaluate their 
performance in the domain of image compression. 
 
2. Wavelet Transform  

 
Wavelet transform is a versatile mathematical tool for analyzing signals with dynamic changes in frequency 

attributes over time. Its applicability extends to signals of one, two, or higher dimensions, preserving unique signal 
features. This transformative process involves decomposing a signal to obtain a set of basis functions known as 
wavelets. These wavelets, focused on both frequency and time around specific points, play a pivotal role in 
achieving approximation through the summation of short-lived waves, aptly named wavelets. The compact support 
characteristic signifies that wavelets do not extend indefinitely in the signal. 

Moreover, wavelets exhibit asymmetry and irregularity, making them valuable in signal processing. The zero-
sum area beneath the wavelet curve ensures equal energy distribution in both positive and negative directions. In 
signal processing, wavelets effectively recover weak signals from noise and analyze signals with dynamic 
frequency changes over time [22]. 

 
𝑓 = ∑ 𝑎%𝜓%%    (1) 
 

Choosing scales and positions based on powers of two, known as dyadic scales and positions, enhances the 
efficiency and accuracy of our analysis. This analytical improvement is achieved through the discrete wavelet 
transform (DWT), and Mallat developed a particularly efficient implementation of this approach using filters.  
 

The practical filtering algorithm provided by Mallat facilitates a rapid wavelet transform—a process 
resembling a box through which a signal passes, yielding wavelet coefficients swiftly. This analysis, derived from 
the discrete wavelet transform (DWT) [14], initiates from the signal s and produces the coefficients C(a, b). " 
 
𝐶(𝑎, 𝑏) = 𝐶(𝑗, 𝑘) = ∑ 𝑠(𝑛)012 𝑔4,5(𝑛)                   (2) 
 

In signal processing, wavelets serve to recover weak signals embedded in noise. Their asymmetric and 
irregular nature sets them apart. Signal decomposition occurs through scaled and shifted versions of the original 
Wavelet, termed the mother wavelet, in wavelet analysis. Scaling involves modifying the signal along its time 
attribute by expanding or compressing it.  

 
Figure 1. The multilevel decomposition of the image, displaying a 2-level decomposition in this instance 

 
In the process of multilevel image decomposition, the image is systematically broken down into multiple 

levels or layers to extract detailed information. This intricate procedure involves applying Wavelet transforms that 
facilitate the isolation of various frequency components within the image. Each level of decomposition reveals 
specific details, contributing to a more comprehensive understanding of the image's structural and textural 
characteristics. 

Furthermore, this multilevel decomposition allows for extracting both coarse and fine features in the image. 
The decomposition process operates iteratively, progressively unveiling hidden nuances within the visual data. 
Through this method, the image's complexity is effectively captured and represented at different scales, providing 
a hierarchical representation that enhances the analysis of its content. 
  

2.1 Wavelet Families 
 

Different families of wavelets are used in signal processing and analysis. Each wavelet family has its own 
unique properties and characteristics that make them suitable for various applications. This study investigates the 
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application of seven well-known wavelet families (haar, dB10, sym7, coif3, bir5.5, rbio2.6, and dmey). These 
wavelet families are selected based on their widespread recognition and utilization in JPEG 2000. A concise 
overview of seven widely recognized wavelet families, each distinguished by unique properties and applications 
in signal processing and image compression.  

Haar Wavelet: The Haar wavelet is the most straightforward function operating with two coefficients. It's a 
piecewise constant function and is computationally efficient. While it lacks smoothness, it's often used in 
introductory studies due to its simplicity.  

dB10 Wavelet: The "dB" in "dB10" stands for Daubechies, a famous family of wavelets known for its 
compact support and orthogonality. dB10 is a specific wavelet from the Daubechies family, characterized by 10 
vanishing moments, which means it captures more complex signal features.  

Sym7 Wavelet: This belongs to the Symlets family, an extension of Daubechies wavelets with slightly 
improved symmetry. Symlets offer good performance in compressing signals with edges and details.  

Coif3 Wavelet: Coiflets, or Coiflet wavelets, are similar to Daubechies and Symlets but have a different 
shape. Coif3, in particular, is from this family and helps analyze signals with finite support.  

Bior5.5 Wavelet: Bior stands for "Biorthogonal" wavelets, which use separate sets of functions for 
decomposition and reconstruction. The 5.5 represents the number of vanishing moments in each of these functions. 
Biorthogonal wavelets like Bior5.5 are valuable for handling non-stationary signals.  

Rbio2.6 Wavelet: Another member of the biorthogonal wavelet family, Rbio2.6, has different characteristics 
compared to Bior5.5. The numbers in the name indicate the number of vanishing moments for the analysis and 
synthesis wavelets, respectively.  

Dmey Wavelet: The Dmey wavelet, also known as the Meyer wavelet, is derived from a function introduced 
by Yves Meyer. It's characterized by smoothness and symmetry and is often used in image compression and 
denoising applications. 

Each of these wavelets has specific properties regarding frequency response, vanishing moments, support, 
and other characteristics that make them suitable for different types of signal analysis, compression, and feature 
extraction tasks. The choice of Wavelet depends on the specific requirements and characteristics of the signal 
being analyzed or processed. 

 
3. Method: Wavelet-Based Image Compression and Reconstruction 
 

Image compression using wavelets involves transforming and analyzing individual images. Wavelet 
transforms and decomposes an image into its frequency components, creating a multi-resolution representation. 
This transformation allows for efficient compression by removing redundant or less noticeable image data while 
preserving crucial visual information. Figure 2 illustrates the sequential steps involved in image processing, 
commencing with the application of wavelet transform, followed by quantization, coding, and culminating in the 
generation of the compressed image. 

 
Figure 2. The block diagram illustrates the image compression process employing Wavelet transform. 

 
Wavelet-based image compression typically involves spatial information compression. It takes advantage of 

the spatial redundancy present in images, identifying and reducing unnecessary pixel data while retaining essential 
details. 

In multilevel wavelet decomposition, images are divided into sub-bands like LL (low-low), LH (low-high), 
HL (high-low), and HH (high-high) using the wavelet transform. These sub-bands represent different frequency 
components of the image. 

This compression technique finds applications in various fields, such as photography, medical imaging, 
satellite imagery, and digital libraries, where single images must be stored, transmitted, or processed efficiently. 

Upon transforming image data through wavelets, the subsequent application of thresholding and quantization 
processes becomes imperative. Subband thresholding is a technique used in signal processing and image 
compression. It involves dividing a signal or image into different frequency bands or subbands and applying a 
threshold to the coefficients within these subbands. This thresholding helps to reduce less significant or noisy 
information, leading to compression [24]. 

Original
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Transform
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Quantization, as a crucial step in the image compression workflow, reduces the number of symbols within 
the data matrix. This process is essential for efficiently compressing data and optimizing memory usage. The 
wavelet coefficients undergo quantization using a carefully selected quantizer, ensuring that the transformed data 
is represented with an appropriate level of precision while effectively managing storage requirements. The 
meticulous application of quantization aligns with the overarching goal of image compression, enabling the 
preservation of essential information while minimizing the memory footprint of the compressed data. 

Following the quantization process, the data undergo compression, particularly in image compression, where 
quantization and coding techniques are employed. In image compression workflows, lossy compression techniques 
are expected to be used at this stage. The outcome of this process is the acquisition of compressed images 
characterized by a significantly reduced file size. This reduction in file size is a key objective in image 
compression, allowing for more efficient storage, transmission, and handling of visual data while acknowledging 
the inherent trade-offs associated with lossy compression methods. 

Huffman coding is a widely used entropy coding algorithm in information theory and compression. A 
variable-length coding method assigns shorter codes to more frequent symbols and longer codes to less frequent 
symbols. Huffman coding is often used to compress data efficiently, and it's a key component in many compression 
algorithms. 

Huffman coding stands as a widely adopted algorithm for achieving image compression. This algorithm 
meticulously analyzes the frequencies of pixel values, assigning shorter codes to frequently occurring symbols and 
longer codes to those that are less common, resulting in the construction of a Huffman tree. However, the 
conventional Huffman coding approach necessitates the decoder to traverse the entire tree, introducing potential 
inconvenience. The classical Huffman algorithm has been extensively employed in both data compression and 
image compression applications. One notable drawback of the traditional Huffman algorithm is its reliance on 
variable-length codes for symbol representation dictated by their frequency of occurrence. Although this strategy 
effectively compresses frequently encountered symbols, it may generate lengthier codes for symbols that occur 
less frequently. 

 
 

 
Figure 3. Block diagram for the reconstruction of the compressed image. 

 
 
Following the acquisition of the compressed image, the processes mentioned above are reversed, as illustrated 

in the block diagram presented in Figure 3. The decoding process involves reversing compression, wherein the 
compressed image undergoes dequantization. Subsequently, an inverse wavelet transform is applied to restore the 
original data structure. The culmination of these processes leads to reconstructing the image in its original form. 
This intricate series of operations ensures that the information lost during compression is recuperated, restoring 
the visual data to its pre-compressed state. 

 
  
3.1. Development of the Novel NWI Wavelet in Image Compression 
 
In this research, a novel wavelet is developed and explicitly proposed for image compression, referred to as 

"new wavelet for image compression" or NWI. This new Wavelet is a variant of the Daubechies filter, with 
enhanced performance observed when scaling function frequency and vanishing moment are increased [24]. Well-
localized elements characterize the NWI wavelet family. A set of N integer coefficients defines each Wavelet in 
the family represented as k = {0, 1, ..., N - 1}, established through scale relations in Equation 3 and 4. The 
coefficients ak and a1_k, featured in Equations 3 and 4, are filter coefficients, and their relationships are expressed 
[25] as; 

 
 𝜙(𝑥) = ∑ 𝑎5𝜙(2𝑥 − 𝑘):;<

5=>                  (3) 

𝜓(𝑥) = ∑ (−1)5𝑎<;5𝜙(2𝑥 − 𝑘)<
5=@;:               (4) 
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Figure 4.a) displays the proposed wavelet family, NWI 20, while Figure 4.b) illustrates the mother wavelet, 
Daubechies 10. These figures provide visual representations of the wavelet functions, highlighting the distinctive 
characteristics of the newly introduced NWI 20 wavelet and comparing it to the well-established Daubechies 10 
wavelet. 

 

 
 

Figure 4. a) NWI wavelet b) daubechies wavelet 
 
Standard test images such as Lena, house, lake, and tree are chosen to assess the efficacy of these wavelet 

transformations. These images are widely recognized and serve as benchmarks for readers' convenience in image 
compression. 

 
 3.2 Measurement of Image Quality 
 
In lossy compression, the reconstructed image's pixel values differ from the original image's pixel values. If 

the difference between the original and reconstructed images is imperceptible to the human eye, it signifies good 
compression. In this study, the Peak signal-to-noise ratio (PSNR) has been used to measure the quality of the 
reconstructed image. The PSNR serves as a metric to quantify the peak error in decibels. Its relevance is 
constrained to data encoded in terms of bits per sample or bits per pixel. A higher PSNR value corresponds to 
enhanced quality in the compressed or reconstructed image. In the context of lossy compression, typical PSNR 
values for an image range between 30 and 50 dB. Notably, the two images become indistinguishable when the 
PSNR surpasses 40 dB. The following equation defines the PSNR: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔<>(
HIJK

LMN
 )                                                    (5) 

 
max: color depth. For 8 bits max=28-1=255, and mean square error can be calculated with Equation 6; 
       
𝑀𝑆𝐸 = <

H0
∑ ∑ |𝑋(𝑖, 𝑗) − 𝑋T(𝑖. 𝑗)|@0=<

4=>
H=<
%=>             (6) 

 
Where, M and N represents the size of the image, X represents the given input image and Xc represents the 
reconstructed image. 
 
The compression ratio (CR) is defined as the proportion of elements in the compressed image to the number 

of elements in the original image, expressed as a percentage.It is employed to determine the compression 
percentage attained by a compression algorithm, calculated through the Equation 7. 

𝐶𝑅 = V1 − WX
WY
Z ∗ 100                  (7) 

 
Where hc: number of bits of the compressed image, hi: number of bits of the initial image 
 
The Compression Performance (CP) metric, initially introduced by Bulut et al. [26], combines the Peak 

Signal-to-Noise Ratio (PSNR) as the quality measure and Compression Ratio (CR) as the compression metric. 
This hybrid metric effectively captures the correlation between PSNR and CR, enabling a comprehensive 
assessment of compression performance. The formulation of CP in Equation 8 as follow; 

 
𝐶𝑃 = 𝑃𝑆𝑁𝑅	𝑥	𝐶𝑅                  (8) 
 
A higher CP value indicates superior performance in image compression, emphasizing the ability to achieve 

higher levels of compression without compromising image quality. 
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All selected test images undergo compression using the seven established wavelet families and the newly 

developed NWI wavelet. The results are then evaluated using two key performance metrics: Compression Ratio 
(CR), Peak signal-to-noise ratio (PSNR) and Compression Performance (CP. This comprehensive analysis aims 
to provide insights into the comparative performance of different wavelet families, including the innovative NWI 
wavelet, in the context of image compression. 

 
4. Results and Discussions 
 
This study systematically evaluates the performance of eight distinct wavelet families, including the proposed 

"NWI" wavelet, using eight diverse test images, consistently employing the Huffman compression method across 
all wavelet families. The uniform use of Huffman compression allows for an analysis of the efficacy of the wavelet 
families while minimizing the impact of coding variations in the process [27]. The objective is to evaluate the 
overall effectiveness of these wavelet families and compare them with the developed and proposed NWI Wavelet 
across a spectrum of images, aiming to gain a comprehensive understanding of their performance variations in 
diverse scenarios. 

In this study, we utilized a set of standard, widely recognized test images for our analysis as shown in Figure 
5. The images chosen include House, Lenna, Lake, and Tree, which were specifically selected to assess medium 
to low-frequency responses of the wavelet families. Additionally, Peppers, Baboon, Boat, and Airplane images 
were incorporated to evaluate the high-frequency response of the wavelet families. 

 

    

    
Figure 5. Eight test images, arranged from top left to right as House, Lenna, Lake, Tree, and from bottom 

left to right as Peppers, Baboon, Boat, and Airplane. 
 
Figure 6 offers an exhaustive examination of the compression performances demonstrated by eight distinct 

wavelet families across eight test images. The analysis encompasses a range of threshold values applied with 
Huffman coding, allowing for exploring diverse compression ratios. This comprehensive evaluation provides 
valuable insights into the varying capabilities of each wavelet family in achieving optimal compression results for 
the specified test images under different threshold settings, thereby contributing to a nuanced understanding of 
their performance characteristics. The results depicted in Figure 6.a) and 6.b) highlight notable similarities in the 
compression outcomes for the House and Lenna images, wherein the difference in image quality between the best 
and worst-performing wavelet family is approximately 3 dB. Sym7 and Coif3 emerge as the top-performing 
wavelet families, while rbio2.6 exhibits the least favorable performance. Considering the proposed NWI wavelet, 
it exhibits superior performance compared to the other seven wavelet families.  

The reconstructed image quality is approximately 1 dB higher than that achieved with the Coif3 wavelet. This 
enhancement in performance highlights the efficacy of the proposed NWI wavelet in image reconstruction, 
demonstrating its potential for superior results compared to established wavelet families. 
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Figure 6. Comparison of Peak Signal-to-Noise Ratio (PSNR) against Compression Ratio (CR) for Eight 
Wavelet Families across Four Test Images. 

 
In the case of Lake and Tree images, a consistent trend is observed, with their image quality registering 

approximately 5 dB lower for all wavelet families compared to the House and Lenna images, as depicted in Figure 
6.c) and Figure 6.d). Sym7 and coif3 consistently deliver optimal performance, while rbio2.6 consistently yields 
the least favorable results. It is crucial to emphasize that the x-axis of the figure illustrates the compression ratio, 
ranging between 45% and 95%.  

Likewise, the proposed NWI wavelet demonstrates enhanced compression performance for the tree and lake 
datasets. It yields results that are 1 dB superior compared to Sym7 and Coif3 wavelets. This improvement 
underscores the effectiveness of the proposed NWI wavelet in achieving higher compression efficiency, displaying 
its potential advantages over established wavelets like sym7 and coif3. 

 
Figure 7 depicts the performance assessment of various wavelet families applied to four additional test 

images: Peppers, Baboon, Boat, and Airplane. Each graph within the figure represents the performance of a 
specific wavelet family in terms of compression ratio (CR) versus peak signal-to-noise ratio (PSNR) for each test 
images. This comprehensive evaluation offers valuable insights into the diverse capabilities of each wavelet family 
in achieving optimal compression outcomes for the specified test images across various threshold settings, thus 
contributing to a nuanced comprehension of their performance characteristics. Notably, the results for the Peppers 
image, as depicted in Figure 7.a), showcase the best performance among the four additional test images. 
Conversely, the Baboon image, shown in Figure 7.b), exhibits the lowest performance, registering a notable 8 dB 
less compared to the average performance. Among the evaluated wavelet families, Sym7 and Coif3 emerge as the 
top performers, while Rbio2.6 demonstrates the least favorable performance. 

Introducing the proposed NWI wavelet it performs better than the other seven wavelet families. The 
reconstructed image quality with NWI is approximately 1 dB higher than that achieved with the Coif3 wavelet, 
underscoring its efficacy in image reconstruction and its potential for superior results compared to established 
wavelet families. 

A consistent trend is observed for the Boat and Airplane images, with their image quality depicted in Figure 
7.c) and Figure 7.d), respectively. Dmey and Coif3 consistently deliver optimal performance, while Rbio2.6 
consistently yields the least favorable results.  
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Furthermore, the proposed NWI wavelet demonstrates enhanced compression performance across the four 
image datasets, yielding results that are 1.5 dB superior compared to Sym7 and Coif3 wavelets. This improvement 
underscores the effectiveness of the proposed NWI wavelet in achieving higher compression efficiency, 
highlighting its potential advantages over established wavelets such as Sym7 and Coif3. 

 

 

 

 
   

 

 

 
 

Figure 7. Comparison of Peak Signal-to-Noise Ratio (PSNR) against Compression Ratio (CR) for seven 
wavelet families across four additional test images.. 

 
Figure 8.a) illustrates compressed and reconstructed house images chosen from the test dataset as an exemplar 

leveraging the NWI wavelet family. The original and reconstructed image disparities, depicted as residuals, reveal 
that regions colored black signify the attainment of high image quality. This visualization effectively demonstrates 
the effectiveness of the NWI wavelet family in preserving image quality during the compression and reconstruction 
processes.  
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Figure 8. Utilizing the wavelet family "NWI", a) the original versus the compressed and reconstructed Test 
Image-1, and b) the original versus the compressed and reconstructed Test Image-4. 

 
Figure 8.b) presents another illustrative example from our image dataset. Here, the lake image undergoes 

compression and reconstruction utilizing the NWI wavelet family, visually representing the process. The residuals, 
depicting the differences between the original and reconstructed images, exhibit certain image textures. This 
observation suggests a lower Peak signal-to-noise ratio (PSNR) compared to the house image. The nuanced 
variations in residual patterns contribute to a comprehensive understanding of the NWI wavelet family's 
performance across different images. 

Table 1 presents a detailed analysis of the compression performances of various wavelet families while 
maintaining a constant Peak Signal-to-Noise Ratio (PSNR) of 40 dB. The table also includes summary statistics 
such as average (Avg) and standard deviation (Stdev) PSNR values across all wavelet families for each test image, 
providing a comprehensive overview of their performance. Notably, Nvi, Coif3, and dB10 demonstrate superior 
Compression Ratios (CR), achieving values of 76.00%, 75.95%, and 75.55%, respectively. In contrast, Haar and 
Rbio2.6 exhibit relatively lower CR performances, registering 72.62% and 72.52% values. The highest PSNR 
value of 41.58 dB is observed in the House image, indicating excellent compression quality, while the lowest 
PSNR performance of 32.5 dB is noted in the Baboon image. 

Examining the standard deviation values in the last row of the table reveals variations in image quality among 
different wavelet families, ranging from 0.41 to 1.27. This suggests a relatively consistent performance correlation 
across the families. However, the standard deviation values for the average PSNR range from 7.75 to 10.06, 
indicating that the images' characteristics influence the performance of wavelet families. 

Moreover, Coif3 and Sym7 demonstrate commendable CR values across various test images, indicating 
superior performance. Conversely, Rbio2.6 and Haar exhibit relatively lower CR performances. The proposed 
NWI wavelet shows promising CR performance, positioning it as a compelling option for image compression. Its 
consistent performance and good CR make it a valuable addition to existing wavelet families, potentially offering 
enhanced versatility in various compression scenarios. 

The performance of the NWI wavelet, achieving 76% in our study, is particularly noteworthy, demonstrating 
superior CR values across a set of test images. This observation underscores the NWI wavelet's potential as a 
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valuable option for efficient image compression, competing favorably with established wavelet families like Coif3 
and Sym7. 

 
Table 1. Performance of Test Images at a Constant PSNR of 40 dB with Compression Ratio (CR). 

 
Wave 
Familiy Lenna House Lake Tree Peppers Baboon Boat Airplane Avg Stdev 
haar 78.36 83.28 69.41 67.78 79.36 51.2 72.34 77.6 72.42 10.06 
db10 80.83 84.16 71.08 69.86 83.03 56.96 72.66 77.78 74.55 8.95 
sym7 81.80 85.69 71.87 70.37 81.8 58.48 73.01 78.68 75.21 8.69 
coif3 82.62 85.89 72.07 71.28 83.47 58.52 74.68 79.06 75.95 8.88 
bior5.5 81.29 83.98 71.15 70.81 81.29 59.47 74.88 78.16 75.13 7.96 
rbio2.6 80.08 82.47 67.86 66.00 81.06 55.1 71.2 77.22 72.62 9.42 
dmey 81.54 84.05 71.47 70.96 82.13 56.03 72.29 78.74 74.65 9.14 
NWI20 83.08 85.77 70.36 73.79 81.31 61.59 74.92 77.17 76.00 7.75 
Avg 81.20 84.41 70.66 70.11 81.68 57.17 73.25 78.05 72.54 10.81 
Stdev 1.49 1.26 1.41 2.35 1.19 2.95 1.32 0.67 1.53 0.99 

 
 
Table 2 thoroughly examines the Peak Signal-to-Noise Ratio (PSNR) image quality achieved under a 

consistent 80% compression ratio, shedding light on the efficacy of various wavelet families applied to the test 
images. The inclusion of statistical metrics in the last two columns of the table further enriches the analysis by 
providing insights into the average and standard deviation for each wavelet family. 

Significant performance disparities emerge among the wavelet families, with Nvi, Dmey, and Coif3 emerging 
as the top performers, boasting PSNR values of 39.10, 38.52, and 38.07 dB, respectively. Conversely, Haar and 
Rbio2.6 exhibit comparatively inferior PSNR performance, clocking in at 36.99 and 37.68 dB values. The disparity 
in PSNR values underscores the varying effectiveness of different wavelet families in preserving image quality 
under compression. 

 
Table 2. Performance of Test Images at a Constant Compression Ratio of 80% with Peak Signal-to-Noise 

Ratio (PSNR) Values. 
PSNR (dB) image quality    

Wave 
Familiy Lenna House Lake Tree Peppers Baboon Boat Airplane AVG Stdev 
haar 39.18 41.64 35.32 34.96 39.02 30.42 36.43 38.93 36.99 3.48 
db10 40.46 41.63 35.54 34.93 41.46 31.69 37.54 38.69 37.74 3.52 
sym7 41.45 42.42 35.93 35.18 41.05 31.72 38.02 38.75 38.07 3.64 
coif3 41.86 42.48 36.04 35.64 40.85 33.78 38.64 35.64 38.12 3.30 
bior5.5 40.98 41.08 35.58 35.4 40.21 32.52 39.13 39.22 38.02 3.13 
rbio2.6 39.68 40.21 34.82 34.45 41.55 32.63 38.24 39.82 37.68 3.26 
dmey 41.6 41.62 35.73 35.48 41.63 33.76 38.72 39.59 38.52 3.15 
NWI20 41.54 42.89 37.25 36.90 41.98 33.48 38.96 39.82 39.10 3.14 
Avg 40.84 41.58 35.57 35.15 40.97 32.50 38.21 38.81 37.62 3.61 
Stdev 0.98 0.78 0.41 0.41 0.90 1.11 0.83 1.27 1.03 0.20 
 
Highlighting individual image performance, the House image stands out with the highest average PSNR value 

of 41.58 dB, indicative of superior compression quality. On the contrary, the Baboon image demonstrates the 
lowest PSNR performance at 32.5 dB, signaling challenges in preserving image fidelity for certain content types. 

A closer examination of the standard deviation values in the table's last row reveals the range of variation in 
image quality among different wavelet families, spanning from 0.41 to 1.27. This suggests a relatively consistent 
performance correlation across the families, indicating their overall reliability in maintaining image quality. 
However, the standard deviation values for the average PSNR paint a nuanced picture, ranging from 3.13 to 3.64. 
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This indicates that while wavelet families exhibit consistent performance trends, their effectiveness is indeed 
influenced by the inherent characteristics of the images themselves, underscoring the complexity of image 
compression dynamics. 

Furthermore, the proposed NWI20 consistently delivers superior results across various image types, 
underscoring its efficacy in image compression. This observation aligns with our expectations, highlighting the 
advantageous performance of the proposed NWI wavelet. It's essential to note that the type of image significantly 
influences the attained image quality, emphasizing the need for tailored compression strategies based on image 
content. 

Table 3 presents detailed information on the average Compression Ratio (CR) and Peak Signal-to-Noise Ratio 
(PSNR) achieved across ten compression levels for all test images. Notably, Coif3 and Sym7 demonstrate 
commendable CR, indicating superior performance across various test images. Conversely, Rbio2.6 and Haar 
exhibit relatively lower CR. The newly introduced NWI Wavelet shows promise with its CR performance. Overall, 
the trend highlights NWI and Coif3 as favorable choices for image compression due to their high average PSNR 
values and consistent performance. Low standard deviation values suggest minimal performance variations among 
wavelet families, indicating comparable effectiveness in diverse compression scenarios. The performance of the 
NWI wavelet is particularly noteworthy, demonstrating superior CR across diverse test images and showcasing 
competitive results compared to established wavelet families like Coif3 and Sym7. Its consistent performance and 
good CR make it a compelling option for applications requiring efficient image compression, potentially offering 
enhanced versatility in various compression scenarios. 

 
Table 3. Average Compression Ratio (CR) and average Peak Signal-to-Noise Ratio (PSNR) achieved for 

the test images at 10 compression levels, utilizing various wavelet families. 
 

  haar db10 sym7 coif3 bior5.5 rbio2.6 dmey NWI20 
  CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR 

Lenna 
Avg 72.79 41.74 71.45 43.94 72.19 43.88 72.59 43.96 74.17 42.72 74.03 41.64 72.07 44.03 72.78 44.66 

Stdev 18.28 8.28 17.41 8.31 17.54 8.15 17.29 8.14 17.82 8.65 17.79 8.38 17.59 8.26 18.78 8.63 

House 
Avg 73.36 43.62 69.90 45.44 71.42 45.37 71.49 45.47 72.68 44.20 72.77 43.33 70.62 45.43 71.69 46.20 

Stdev 20.12 8.76 20.33 9.36 20.54 9.09 20.32 9.16 20.54 9.35 20.51 8.95 20.52 9.33 21.75 9.76 

Lake 
Avg 70.65 39.25 68.46 40.63 69.04 40.64 69.47 40.62 70.69 39.63 71.24 38.54 68.27 40.75 70.95 41.44 

Stdev 19.55 7.60 21.12 8.36 21.04 8.18 20.55 8.15 20.75 8.40 21.03 8.03 21.30 8.34 22.07 8.66 

Tree 
Avg 70.17 39.37 68.11 40.22 68.81 40.38 69.71 40.26 70.64 39.22 70.63 38.40 68.95 40.28 70.37 41.06 

Stdev 20.58 7.82 21.85 8.43 21.29 8.34 20.99 8.28 21.24 8.46 21.24 7.99 21.54 8.34 22.81 8.73 

Peppers Avg 72.59 41.62 71.26 43.85 72.34 43.82 72.21 43.90 73.18 42.82 73.77 41.44 71.42 43.96 69.59 44.56 

Stdev 19.19 7.82 19.24 8.30 19.24 8.08 18.52 8.06 18.68 8.19 19.40 8.37 19.15 8.27 20.01 8.67 

Baboon Avg 66.33 37.75 66.06 38.54 66.55 38.51 66.74 38.49 66.66 37.86 67.00 37.10 66.69 38.60 66.08 39.33 

Stdev 24.88 8.96 24.64 9.45 24.55 9.38 24.50 9.37 24.39 9.29 24.79 9.09 24.69 9.47 24.84 9.71 

Boat Avg 70.64 40.39 68.76 41.85 69.64 41.90 70.10 41.85 70.98 40.99 71.68 39.75 68.98 42.00 67.98 42.64 

Stdev 20.09 7.99 20.64 8.58 19.88 8.45 19.83 8.41 20.08 8.47 20.64 8.32 20.39 8.56 21.52 8.83 

Airplane Avg 74.04 40.96 71.95 42.33 72.38 42.37 72.77 42.36 74.49 41.28 74.68 40.30 72.09 42.48 70.95 43.10 

Stdev 16.62 7.60 17.52 8.27 16.95 8.11 16.91 8.07 17.54 8.34 17.50 7.98 17.53 8.23 18.65 8.50 
 
The standard deviation (Stdev) values reflect the consistency of the proposed method's performance, showing 

relatively lower variations. These results underscore the robustness and superior performance of the proposed NWI 
wavelet across various compression scenarios. However, choosing the best wavelet family may also depend on 
specific application requirements.  

The compression performance of various wavelet families was assessed using Compression Performance 
(CP) values across a range of test images. Table 4 provides an overview of the Compression Performance (CP) 
exhibited by various wavelet families across different test images. The highest CP value observed is 3312.08, 
achieved by the NWI20 wavelet in the House image, which represents the proposed method. Conversely, the 
lowest CP value of 2485.80 is obtained with the rbio2.6 wavelet in the Baboon image. 
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Table 4. Compression Performance of test images, utilizing various wavelet families 

Compression Performance (CP) 

 haar db10 sym7 coif3 bior5.5 rbio2.6 dmey NWI20 

Lenna 3038.25 3139.51 3167.70 3191.06 3168.54 3082.61 3173.24 3250.35 

House 3199.96 3176.26 3240.33 3250.65 3212.46 3153.12 3208.27 3312.08 

Lake 2773.01 2781.53 2805.79 2821.87 2801.44 2745.59 2782.00 2940.17 

Tree 2762.59 2739.38 2778.55 2806.52 2770.50 2712.19 2777.31 2889.39 

Peppers 3021.22 3125.05 3169.55 3170.12 3133.45 3057.07 3139.22 3100.80 

Baboon 2504.14 2545.93 2562.75 2568.50 2523.87 2485.80 2573.96 2598.72 

Baot 2853.41 2877.21 2917.75 2933.17 2908.91 2849.44 2897.32 2898.48 

Airplane 3033.11 3045.38 3066.97 3082.73 3075.18 3009.88 3062.66 3057.84 
 
Notably, NWI20 and Coif3 consistently demonstrated superior compression performance, with NWI20 

exhibiting particularly high CP values, notably in the House image. Sym7 also showcased commendable 
compression performance across diverse test images. However, DB10 and Dmey displayed moderate performance, 
with CP values generally falling within a moderate range. In contrast, Haar, rbio2.6, and bior5.5 exhibited 
relatively lower compression performance, with CP values tending to be on the lower end of the spectrum across 
most test images 

Figures 9 illustrate the trend lines depicting the relationship between wavelet families and their corresponding 
performances in both PSNR and CR. In Figure 9, the compression ratios of eight selected wavelet families are 
depicted for images with a quality of 40 dB. The graph illustrates the variations in compression ratios among the 
wavelet families, with a discernible trend line capturing these differences. Notably, the house image attains the 
highest compression ratio, signifying superior compression efficiency compared to the other test images. 
Conversely, the Baboon image exhibits the lowest compression ratio, indicating less optimal performance in 
achieving data reduction. This graphical representation offers a clear visual insight into how the selected wavelet 
families perform regarding compression ratios at a specific image quality level. 

  

 
Figure 9. Compression performance of wavelet families for test images. 

 
In Figure 10, the image quality, as measured by PSNR values, is presented at a fixed compression ratio of 

80%. The graph highlights the performance of various test images across this compression level. Impressively, the 
house image stands out with the highest quality, indicating its resilience to compression at the specified ratio. 
Additionally, the PSNR values for the Peppers test image closely approach those of the house image, emphasizing 
their comparable high-quality retention. On the other hand, the Lake and Baboon test images exhibit PSNR values 
approximately 8 dB lower than those of the House and Peppers. This detailed analysis provides valuable insights 
into the varying image qualities achieved by the tested compression methods under the defined conditions. 
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Figure 10. PSNR values of test images for fixed 80%compression ratio for different wavelet families. 

 
The table and figure information suggests a connection between image specifications, specifically entropy, 

and the impact of different wavelet families on compression ratio and image quality. The observed results indicate 
that the choice of wavelet family significantly influences the performance. Notably, Coif3, characterized by a high-
frequency converter, demonstrates superior compression ratio and image quality performance compared to other 
wavelet families. This emphasizes the importance of selecting an appropriate wavelet family based on specific 
image characteristics and compression requirements. 

By assessing and comparing performance metrics, specifically Compression Ratio (CR) and Peak signal-to-
noise Ratio (PSNR), one can effectively determine an appropriate wavelet transform for a specific image 
processing application. The CR and PSNR values analysis proves instrumental in selecting the optimal Wavelet 
for a given task. Notably, PSNR values ranging from 30 to 40 dB are generally deemed satisfactory across various 
applications. However, it is imperative to validate the suitability of wavelets individually for each application, 
ensuring an optimal match between the chosen Wavelet transform and the specific requirements of the image 
processing task at hand. 

 
5. Conclusions 
 
In conclusion, the comprehensive evaluation of various wavelet families for image compression performance, 

as detailed in the tables and figures, provides in-depth insights into their respective influences on compression 
ratio and image quality. The results emphasize the crucial role of selecting an appropriate wavelet family tailored 
to specific image characteristics and desired compression goals. Notably, Coif3, distinguished by its high-
frequency conversion capabilities, is a standout performer, showcasing superior results across the assessed 
parameters. 

Additionally, including the proposed NWI wavelet in the evaluation further enhances the understanding of 
its performance characteristics. The NWI wavelet consistently exhibits competitive results, demonstrating its 
potential as a viable option in image compression scenarios. These findings significantly contribute to the broader 
comprehension of wavelet-based image compression, offering practical guidance for optimizing performance 
across diverse applications. 

As the field of image compression continues to advance, ongoing investigations and refinements in wavelet 
selection and compression techniques are essential to fuel continued progress in image processing. Integrating 
innovative wavelets, such as the NWI wavelet, into the existing landscape further expands the possibilities for 
achieving enhanced compression outcomes and improved image quality. 
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