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Abstract

We introduce a new family of continuous distributions called the com-
plementary geometric transmuted-G family, which extends the trans-
muted family proposed by Shaw and Buckley (2007). Some of its
mathematical properties including explicit expressions for the ordinary
and incomplete moments, quantile and generating functions, entropies,
order statistics and probability weighted moments are derived. Two
special models of the introduced family are discussed in detail. The
maximum likelihood method is used for estimating the model parame-
ters. The importance and �exibility of the new family are illustrated by
means of two applications to real data sets. We provide some simulation
results to assess the performance of the proposed model.
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1. Introduction

The statistical literature is full of new families of distributions that extend clas-
sical distributions and at the same time become very important for statisticians due to
their �exible properties. These new families have been extensively used in modelling data
in several applied areas such as reliability, engineering and life testing. In recent years
there has been an increased interest in developing more �exible generators for univariate
continuous distributions by adding extra shape parameter(s) to the baseline distribution.
Some well-known families are the beta-G by Eugene et al. (2002), the Kumaraswamy-G
by Cordeiro and de Castro (2011), the McDonald-G by Alexander et al. (2012), the
gamma-G by Zografos and Balakrishanan (2012), the Weibull-G by Bourguignon et al.
(2014), the odd generalized exponential-G by Tahir et al. (2015), the transmuted expo-
nentiated generalized-G by Yousof et al. (2015), the generalized transmuted-G by Nofal
et al. (2017), the transmuted geometric-G by A�fy et al. (2016a), the Kumaraswamy
transmuted-G by A�fy et al. (2016b), the exponentiated transmuted-G by Merovci et al.
(2016), the Burr X-G by Yousof et al. (2016), the two-sided power-G by Korkmaz and
Genc (2016) and the beta transmuted-H by A�fy et al. (2016d).

Let G (x;ϕ) be a baseline cumulative distribution function (cdf) and g (x;ϕ) be the
associated probability density function (pdf), where ϕ = (ϕ1, ϕ2, . . .) is a parameter
vector. Then, the cdf and pdf of the transmuted-G (T-G) family of distributions are,
respectively, given by

(1.1) H (x;λ, ϕ) = G (x;ϕ) [1 + λ− λG (x;ϕ)]

and

(1.2) h (x;λ, ϕ) = g (x;ϕ) [1 + λ− 2λG (x;ϕ)] ,

where |λ| ≤ 1. It is noted that the T-G family is a mixture of the baseline and
exponentiated-G (exp-G) distributions, the last one with power parameter equal to two.
Further, we obtain the baseline distribution when λ = 0. For more details about the T-G
family, see Shaw and Buckley (2007).

For a baseline random variable having pdf h(x) and cdf H(x), the complementary
geometric-H (CGc-H) family is de�ned by the cdf (see Appendix A)

F (x; θ, ϕ) =
θH (x;ϕ)

1− (1− θ)H (x;ϕ)
,

and the pdf given by

f (x; θ, ϕ) =
θh (x;ϕ)

[1− (1− θ)H (x;ϕ)]2
,

where θ ∈ (0, 1). In this paper, we propose and study a new extension of the T-G family
by adding one parameter in equation (1.1) to provide more �exibility to the generated
family. We construct a new generator called the complementary geometric transmuted-G
(CGcT-G) family by taking the T-G cdf in (1.1) as the baseline cdf H in the last two
equations. Further, we give a comprehensive description of the mathematical properties
of the new family. In fact, the CGcT-G family is motivated by its important �exibility
in applications. By means of two applications, we show that the CGcT-G class provides
better �ts than at least seven other families each having the same number of parameters.

The rest of the paper is outlined as follows. Section 2 is devoted to some well-known
distributions, which will be used in the empirical comparisons in Section 9. In Section
3, we de�ne the CGcT-G family. A very useful linear representation for its pdf is de-
rived in Section 4. In Section 5, we de�ne two special models and provide plots of their
pdfs and hazard rate functions (hrfs). In Section 6, we derive some mathematical prop-
erties including ordinary and incomplete moments, quantile and generating functions,
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entropies, probability weighted moments (PWMs) and order statistics. We provide some
properties of the CGcT-Weibull (CGcTW) distribution in Section 7. Maximum likeli-
hood estimation of the model parameters is addressed in Section 8. In Section 9, we give
two applications to real data to illustrate the importance of the introduced family. Some
simulation results assess the performance of the proposed model in Section 10. Finally,
some concluding remarks are presented in Section 11.

2. Previous works

We shall refer to some competitive models to the introduced distribution, namely:
the Kumaraswamy-transmuted exponentiated modi�edWeibull (Kw-TEMW) (Al-Babtain
et al., 2015), transmuted exponentiated modi�ed Weibull (TEMW) (Ashour and Elte-
hiwy, 2013), transmuted exponentiated Weibull geometric (TEWG) (Saboor et al., 2015),
transmuted additive Weibull (TAW) (Elbatal and Aryal, 2013), Kumaraswamy modi�ed
Weibull (Kw-MW) (Cordeiro et al., 2014), beta Weibull (BW) (Lee et al., 2007), Ku-
maraswamy Weibull (Kw-W) (Cordeiro et al., 2010), additive Weibull (AW) (Xie and
Lai, 1995), Weibull Lindley (WLi) (Bourguignon et al., 2014), Weibull gamma (WG)
(Bourguignon et al., 2014), odd log-logistic Lindley (OLL-Li) (Ozel et al., 2016), gener-
alized transmuted Lindley (GT-Li) (Nofal et al., 2017), Kumaraswamy Lindley (Kw-Li)
(Cakmakyapan and Kadilar, 2014) and beta Lindley (BLi) (Merovci and Sharma, 2014)
distributions. Their corresponding pdfs are given in Appendix B.

3. The CGcT-G family

In this section, we generalize the T-G family by incorporating one additional
parameter to yield a more �exible generator. The CGcT-G family is given by the cdf
(for x > 0)

F (x; θ, λ, ϕ) =
θG (x;ϕ) [1 + λ− λG (x;ϕ)]

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]
.(3.1)

The pdf corresponding to (3.1) is

f(x; θ, λ, ϕ) =
θg (x;ϕ) [1 + λ− 2λG (x;ϕ)]

{1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]}2
,(3.2)

where θ ∈ (0, 1) and |λ| ≤ 1 are shape parameters. For λ = 0, we obtain the comple-
mentary geometric-G (CGc-G) family. For θ → 1, we have the T-G family. Henceforth,
we denote by X ∼CGcT-G (θ, λ, ϕ) a random variable having pdf (3.2). The reliability
function (rf) and hrf of X are, respectively, given by

R (x; θ, λ, ϕ) =
1−G (x;ϕ) [1 + λ− λG (x;ϕ)]

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]

and

τ (x; θ, λ, ϕ) =
θ r (x;λ, ϕ)

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]
,

where r (x;λ, ϕ) is the hrf of the T-G family.

4. Linear representation

In this section, we provide a very useful linear representation for the CGcT-G
pdf. We omit the dependence of F (x) and f(x) on the model parameters. The cdf (3.1)
can be expressed as

(4.1) F (x) = θG (x) [1 + λ− λG (x)] {1− (1− θ)G (x) [1 + λ− λG (x)]}−1 .
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An expansion for equation (4.1) can be derived using the power series

(4.2) (1− z)−b =

∞∑
k=0

Γ (b+ k)

k! Γ(b)
zk, |z| ≤ 1, b > 0.

Applying (4.2) to the last term of (4.1) gives

F (x) =

∞∑
k=0

θ(1− θ)k (1 + λ)kGk+1(x) [1 + λ− λG(x)] [1− p G (x)]k ,

where p = λ/ (1 + λ).

Using the binomial expansion to [1− pG (x)]k, we obtain

(4.3) [1− pG (x)]k =

k∑
j=0

(−1)j
(
k

j

)
pjGj(x).

Combining the last two equations gives

F (x) =
∑∞
k=0

∑k
j=0 (−1)j θ(1− θ)k (1 + λ)k pj

(
k
j

) [
(1 + λ)Gk+j+1(x)− λGk+j+2(x)

]
.

Then, we can write

(4.4) F (x) =

∞∑
k=0

k∑
j=0

[υk,j Πk+j+1 (x)− ωk,j Πk+j+2 (x)] ,

where Πα (x) is the cdf of the exp-G family with power parameter α,

υk,j = (−1)j θ(1− θ)k (1 + λ)k+1 pj
(
k

j

)
and

ωk,j = (−1)j θ(1− θ)k (1 + λ)k+1 pj+1

(
k

j

)
.

By di�erentiating (4.4), the pdf (3.2) can be expressed as

f(x) =

∞∑
k=0

k∑
j=0

(−1)j θ(1− θ)k (1 + λ)k pj
(
k

j

)
[
(1 + λ) (k + j + 1) g (x)Gk+j(x)− λ (k + j + 2) g (x)Gk+j+1(x)

]
.

The last equation can be rewritten as

(4.5) f(x) =

∞∑
k=0

k∑
j=0

[υk,j πk+j+1 (x)− ωk,j πk+j+2 (x)] ,

where πα (x) = αg (x)Gα−1 (x) is the exp-G pdf with power parameter α > 0. Thus,
some mathematical properties of the CGcT-G family can be determined from those prop-
erties of the exp-G family. Equations (4.4) and (4.5) are the main results of this section.

5. Special models

In this section, we provide two special models of the CGcT-G family. The pdf
(3.2) will be most tractable when g (x;ϕ) and G (x;ϕ) have simple analytic expressions.
These special models generalize some well-known distributions in the literature.
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5.1. The CGcT-Weibull (CGcTW) distribution. Consider the pdf and cdf
(for x > 0) g(x) = βαβxβ−1 exp

[
−(αx)β

]
and G(x) = 1− exp

[
−(αx)β

]
, respectively, of

the Weibull distribution with positive parameters α and β. Then, the cdf and pdf of the
CGcTW model (for x > 0) are, respectively, given by

F (x) =
θ
{

1− exp
[
−(αx)β

]} {
1 + λ exp

[
−(αx)β

]}
1− (1− θ) {1− exp [−(αx)β ]} {1 + λ exp [−(αx)β ]}

and

f(x) =
θβαβxβ−1 exp

[
−(αx)β

] {
1− λ+ 2λ exp

[
−(αx)β

]}
(1− (1− θ) {1− exp [−(αx)β ]} {1 + λ exp [−(αx)β ]})2 ,

where θ ∈ (0, 1) , |λ| ≤ 1 and β > 0 are shape parameters and α > 0 is a scale parame-
ter. The CGcTW distribution includes the complementary geometric Weibull (CGcW)
distribution when λ = 0. If θ tends to 1, we have the transmuted Weibull (TW) dis-
tribution. For β = 2 and β = 1, we obtain the complementary geometric transmuted
Rayleigh (CGcTR) and complementary geometric transmuted exponential (CGcTE) dis-
tributions, respectively. Figure 1 displays some possible shapes of the pdf and hrf of this
distribution.
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Figure 1. (a) The CGcTW pdf plots. (b) The CGcTW hrf plots.

5.2. The CGcT-Lindley (CGcTLi) distribution. The Lindley distribution with

parameter α > 0 has pdf and cdf (for x > 0) given by g(x) = α2

1+α
(1 + x) exp(−αx) and

G(x) = 1− 1+α+αx
1+α

exp(−αx), respectively. Then, the cdf and pdf of the CGcTLi distri-

bution (for x > 0) are given by

F (x) =
θ
[
1− 1+α+αx

1+α
exp(−αx)

] [
1 + λ 1+α+αx

1+α
exp(−αx)

]
1− (1− θ)

[
1− 1+α+αx

1+α
exp(−αx)

] [
1 + λ 1+α+αx

1+α
exp(−αx)

]
and

f(x) =

θα2

1+α
(1 + x) exp(−αx)

[
1− λ+ 2λ 1+α+αx

1+α
exp(−αx)

]
{

1− (1− θ)
[
1− 1+α+αx

1+α
exp(−αx)

] [
1 + λ 1+α+αx

1+α
exp(−αx)

]}2 ,
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respectively, where θ ∈ (0, 1) and |λ| ≤ 1 are shape parameters and α > 0 is a scale
parameter. The CGcTLi distribution reduces to the complementary geometric Lindley
(CGcLi) distribution when λ = 0. If θ tends to 1, we obtain the transmuted Lindley
(TLi) distribution. Plots of the pdf and hrf of the CGcTLi distribution are displayed in
Figure 2 for some parameter values.
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Figure 2. (a) Plots of the CGcTLi pdf. (b) Plots of the CGcTLi hrf.

6. Properties

The formulae derived throughout the paper can be easily handled in most sym-
bolic computation software platforms such as Maple, Mathematica and Matlab because
of their ability to deal with analytic expressions of formidable size and complexity. Es-
tablished explicit expressions to calculate statistical measures can be more e�cient than
computing them directly by numerical integration.

6.1. Moments. Let Yα be a random variable having exp-G pdf πα(x). The rth
ordinary moment of X, say µ′r, follows from (4.5) as

(6.1) µ′r = E (Xr) =

∞∑
k=0

k∑
j=0

[
υk,j E

(
Y rk+j+1

)
− ωk,j E

(
Y rk+j+2

)]
.

For α > 0, we have

E (Y rα ) = α

∫ ∞
−∞

xr g (x;ϕ) G (x;ϕ)α−1 dx,

which can be computed numerically in terms of the baseline quantile function (qf)
QG (u;ϕ) = G−1 (u;ϕ) as

E (Y nα ) = α

∫ 1

0

QG (u;ϕ)n uα−1du.

Setting r = 1 in (6.1) gives the mean of X. The central moments (µn) and cumulants
(κn) of X are determined from (6.1) as µn =

∑n
k=0

(
n
k

)
(−1)k µ′k1 µ′n−k and κn = µ′n −∑n−1

k=1

(
n−1
k−1

)
κk µ

′
n−k, respectively, where κ1 = µ′1. The skewness γ1 = κ3/κ

3/2
2 and

kurtosis γ2 = κ4/κ
2
2 are obtained from the third and fourth standardized cumulants.
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The nth descending factorial moment of X (for n = 1, 2, . . .) is

µ′(n) = E
[
X(n)

]
= E [X (X − 1)× . . .× (X − n+ 1)] =

n∑
k=0

s (n, k)µ′k,

where s (n, k) = (k!)−1
[
dkk(n)/dxk

]
x=0

is the Stirling number of the �rst kind.

6.2. Incomplete moments. The rth incomplete moment ofX is de�ned bymr(y) =∫ y
−∞ x

r f(x)dx. We can write from (4.5)

(6.2) mr(y) =

∞∑
k=0

k∑
j=0

[υk,j mr,k+j+1(y)− ωk,j mr,k+j+2(y)] ,

where

mr,α(y) = E (Y rα ) =

∫ G(y; ϕ)

0

QrG (u;ϕ) uα−1 du.

The integral mr,α(y) can be determined analytically for special models with closed-form
expressions for QG (u;ϕ) or computed at least numerically for most baseline distributions.

An important application of the �rst incomplete moment refers to the mean deviations
about the mean [δ1 = E (|X − µ′1|)] and about the median [δ2 = E(|X−M |)] of X given
by

δ1 = 2µ′1 F
(
µ′1
)
− 2m1

(
µ′1
)

and δ2 = µ′1 − 2m1(M),

respectively, whereM is the median ofX, F (µ′1) is easily obtained from (3.1), µ′1 = E(X)
can follow from equation (6.1), and m1(z) can be determined from (6.2) with r = 1.

Another common application of the �rst incomplete moment refers to the Bonferroni
and Lorenz curves, which are very useful in economics, reliability, demography, insurance
and medicine. For a given probability π, the Bonferroni and Lorenz curves are given
by B(π) = m1(p)/ (pµ′1) and L(p) = m1(p)/µ′1, where p = Q(π) = F−1(π) can be
determined numerically by inverting (3.1).

6.3. Quantile and generating functions. The qf of X ∼CGcT-G (θ, λ, ϕ) fol-
lows by inverting (3.1), namely x = Q(u) = F−1(u).

θG (x;ϕ) [1 + λ− λG (x;ϕ)]

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]
= u.

Rearranging terms gives the quadratic equation

λG2 (x;ϕ)− (1 + λ)G (x;ϕ) +
u

θ + (1− θ)u = 0.

The two roots are

G (x;ϕ) =
1 + λ±

√
(1 + λ)2 − 4λu/ [u+ θ (1− u)]

2λ
.

Of these, the minus sign gives the valid root. Hence, for λ 6= 0 and u ∈ (0, 1),

x = QG

1 + λ−
√

(1 + λ)2 − 4λu/ [u+ θ (1− u)]

2λ

 ,

where QG(u) = G−1(u) is the baseline qf. For λ = 0, we have

x = QG (u/ [u+ θ (1− u)]) .

Simulating the CGcT-G random variable is straightforward. If U is a uniform variate on
the unit interval (0, 1), then the random variable X = Q(U) follows (3.2).
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The moment generating function (mgf) of X, say M(t) = E [exp (t X)], is determined
from (4.5) as

M(t) =

∞∑
k=0

k∑
j=0

[υk,j Mk+j+1 (t;ϕ)− ωk,j Mk+j+2 (t;ϕ)] ,

where Mα (t;ϕ) is the generating function of Yα given by

Mα (t;ϕ) = α

∫ ∞
−∞

exp (tx) g (x;ϕ)Gα−1 (x;ϕ) dx = α

∫ 1

0

exp [t QG(u;α)]uα−1du.

Both formulas can be computed numerically for most parent distributions.

6.4. Entropies. The Rényi entropy of a random variable X represents a measure
of variation of the uncertainty. It is de�ned by

Iγ (X) = (1− γ)−1 log

(∫ ∞
−∞

fγ (x) dx

)
, γ > 0 and γ 6= 1.

Using the pdf (3.2), we can write

fγ (x) =
θγgγ (x) [1 + λ− 2λG (x)]γ

{1− (1− θ)G (x) [1 + λ− λG (x)]}2γ
.

Applying (4.2) to the denominator gives

fγ (x) =

∞∑
k=0

θγ (1 + λ)k Γ (2γ + k)

k! (1− θ)−k Γ (2γ)
gγ (x)Gk (x) [1− pG (x)]k [1 + λ− 2λG (x)]γ ,

where p = λ/ (1 + λ).
Based on (4.3) and after some algebra, we have

fγ (x) =
∑∞
k=0

∑k
j=0 (−1)j θ

γ(1+λ)kpjΓ(2γ+k)

k!(1−θ)−kΓ(2γ)

(
k
j

)
gγ (x)Gk+j (x) [1 + λ− 2λG (x)]γ ,

or, equivalently,

fγ (x) =

∞∑
k=0

k∑
j=0

mk,j g
γ (x)Gk+j (x) [1 + λ− 2λG (x)]γ ,

where

mk,j = (−1)j
θγ (1 + λ)k pjΓ (2γ + k)

k! (1− θ)−k Γ (2γ)

(
k

j

)
.

Then, the Rényi entropy of the CGcT-G family reduces to

Iγ (X) = (1− γ)−1 log

[
∞∑
k=0

k∑
j=0

mk,j

∫ ∞
−∞

gγ (x)Gk+j (x) [1 + λ− 2λG (x)]γ dx

]
.

The γ-entropy, say Hγ (X), can be obtained as

Hγ (X) = (γ − 1)−1 log

{
1−

[∫ ∞
−∞

fγ (x) dx

]}
,

which follows from the last equation, where γ > 0, γ 6= 1.
The Shannon entropy of a random variable X, say SE, is de�ned by

SE = E {− [log f (X)]} .

It is a special case of the Rényi entropy when γ ↑ 1. So, it follows by taking the limit of
Iγ (X) as γ tends to one.
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6.5. PWMs. Generally, the PWMs are expectations of certain functions of a ran-
dom variable and they can be de�ned for any random variable whose ordinary moments
exist.

The (s, r)th PWM of X following the CGcT-G family, say ρs,r, is given by

ρs,r = E [XsF r(X)] =

∫ ∞
−∞

xs f (x)F r(x)dx.

Using (3.1) and (3.2), we have

f (x)F r(x) =
θr+1g (x)Gr (x) [1 + λ− 2λG (x)] [1 + λ− λG (x)]r

{1− (1− θ)G (x) [1 + λ− λG (x)]}r+2 .

Applying the power series (4.2) gives

f (x)F r(x) =

∞∑
k=0

θr+1Γ (k + r + 2) g (x)Gk+r (x) [1 + λ− 2λG (x)]

k! (1− θ)−k (1 + λ)−k−r Γ (r + 2) [1− pG (x)]−(k+r)
,

where p = λ/ (1 + λ). Using (4.3) and, after some simpli�cations, we obtain

f (x)F r(x) =

∞∑
k=0

k∑
j=0

(−1)j θr+1pjΓ (k + r + 2)

k! (1− θ)−k (1 + λ)−k−r Γ (r + 2)

(
k

j

)
×g (x)Gk+r+j (x) [1 + λ− 2λG (x)] .(6.3)

Then, we have

f (x)F r(x) =

∞∑
k=0

k∑
j=0

[ak,j πk+r+j+1 (x)− bk,j πk+r+j+2 (x)] ,(6.4)

where

ak,j =
(−1)j θr+1 (1 + λ)k+r+1 pjΓ (k + r + 2)

k! (1− θ)−k (k + r + j + 1) Γ (r + 2)

(
k

j

)
and

bk,j =
(−1)j 2θr+1 (1 + λ)k+r+1 pj+1Γ (r + k + 2)

k! (1− θ)−k Γ (r + 2)

(
k

j

)
.

Finally, the (s, r)th PWM of X can be expressed as an in�nite linear combination of
exp-G moments given by

ρs,r =

∞∑
k=0

k∑
j=0

[
ak,j E

(
Y sk+r+j+1

)
− bk,j E

(
Y sk+r+j+2

)]
.

6.6. Order statistics. Let X1, . . . , Xn denote n independent and identically dis-
tributed CGcT-G random variables. Further, letX(1), . . . , X(n) denote the order statistics
from these n variables. The pdf of the ith order statistic X(i), say fi:n(x), is given by

(6.5) fi:n (x) =
f (x)

B (i, n− i+ 1)

n−i∑
s=0

(−1)s
(
n− i
s

)
F s+i−1(x).

Using (6.3), we obtain

f (x)F s+i−1 (x) =
∑∞
k=0

θs+iΓ(k+s+i+1)g(x)Gk+s+i−1(x)[1+λ−2λG(x)]

k!(1−θ)−k(1+λ)−k−s−i+1Γ(r+2)[1−pG(x)]−(k+s+i−1) .
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Using (6.4), we can write

f (x)F s+i−1 (x) =

∞∑
k=0

k∑
j=0

(−1)j θs+ipjΓ (k + s+ i+ 1)

k! (1− θ)−k (1 + λ)−k−s−i+1 Γ (s+ i+ 1)

(
k

j

)
×g (x)Gk+s+i+j−1 (x) [1 + λ− 2λG (x)] .(6.6)

Substituting (6.6) in equation (6.5), the pdf of Xi:n can be expressed as

fi:n (x) =

∞∑
k=0

k∑
j=0

n−i∑
s=0

[
a∗∗k,s πk+s+i+j (x)− b∗∗k,s πk+s+i+j+1 (x)

]
,

where πα(x) is the exp-G pdf with power parameter α,

a∗∗k,s =
(−1)j+s θs+i (1− θ)k (1 + λ)k+s+i pjΓ (k + s+ i+ 1)

k! (k + s+ i+ j)B (i, n− i+ 1) Γ (s+ i+ 1)

(
k

j

)(
n− i
s

)
and

b∗∗k,s = (−1)j+s2θs+i(1−θ)k(1+λ)k+s+ipj+1Γ(k+s+i+1)
k!(k+s+i+j+1)B(i,n−i+1)Γ(s+i+1)

(
k
j

)(
n−i
s

)
.

We note that the pdf of the CGcT-G order statistics is a linear combination of exp-G
pdfs. Based on the last equation, the properties of Xi:n can follow from those properties
of Yα. For example, the moments of Xi:n can be expressed as

(6.7) E (Xq
i:n) =

∞∑
k=0

k∑
j=0

n−i∑
s=0

[
a∗∗k,s E

(
Y qk+s+i+j

)
− b∗∗k,s E

(
Y qk+s+i+j+1

)]
.

The L-moments of X can be written as in�nite weighted linear combinations of suitable
means of the CGcT order statistics determined from equation (6.7) with q = 1. Then,
we can write

λr =
1

r

r−1∑
d=0

(−1)d
(
r − 1

d

)
E (Xr−d:r) , r ≥ 1.

7. The CGcTW properties

In this section, we derive some properties of the CGcTW distribution using the
general properties discussed in Sections 4 and 6. According to equation (4.5), the CGcTW
pdf can be expressed as

f(x) =

∞∑
k=0

k∑
j=0

[υk,j πk+j+1 (x)− ωk,j πk+j+2 (x)] ,

where πη (x) is the exponentiated Weibull (EW) pdf with power parameter η. Thus,
several mathematical properties of the CGcTW distribution can be obtained simply from
those properties of the EW model.

Let T be a random variable having the EW distribution with positive parameters α,
β and δ. Then, the pdf and cdf of T are given by

g(t) = δβαβtβ−1 exp
[
−(αt)β

]{
1− exp

[
−(αt)β

]}δ−1

and

G(t) =
{

1− exp
[
−(αt)β

]}δ
.
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For any n > −b, Al-Hussaini and Ahsanullah (2015) derived the nth ordinary and in-
complete moments of T as

µ′n =
δΓ (1 + n/b)

an

∞∑
l=0

cl (δ)

(l + 1)n/b
and ϕn(t) =

δγ
(

1 + n/b, (a/t)b
)

an

∞∑
l=0

cl (δ)

(l + 1)n/b
,

where cl (δ) = (−1)l δ (δ − 1) . . . (δ − l) / (l + 1)!.

• Moments: From Section 6.1, the rth ordinary moment of the CGcTW distri-
bution can be expressed (for r > −b) as

µ′r =
Γ (1 + r/b)

ar

∞∑
k,l=0

k∑
j=0

[
(k + j + 1) υk,j

cl (k + j + 1)

(l + 1)r/b

− (k + j + 2)ωk,j
cl (k + j + 2)

(l + 1)r/b

]
.

• Incomplete moments: From Section 6.2, the rth incomplete moment of the
CGcTW model is given (for r > −b) by

mr(y) =

γ

(
1 + r

b
,
(
a
y

)b)
ar

∞∑
k,l=0

k∑
j=0

[
(k + j + 1) υk,j

cl (k + j + 1)

(l + 1)r/b

− (k + j + 2)ωk,j
cl (k + j + 2)

(l + 1)r/b

]
.

• mgf: The mgf of the CGcTW model is given by

M(t) =

∞∑
k,l=0

k∑
j=0

(−1)l1 Ψ0

[ (
1,−β−1

)
− ; (l + 1)

−1
β

t

α

]
[
υk,j

(
k + j + 1

l + 1

)
− ωk,j

(
k + j + 2

l + 1

)]
,

where pΨq(· · · ) is the complex parameter Wright generalized hypergeometric
function with p numerator and q denominator parameters (Kilbas et al., 2006,
Equation (1.9)) de�ned by the power series

pΨq

[
(α1, A1) , . . . , (αp, Ap)
(β1, B1) , . . . , (βq, Bq)

; z

]
=
∞∑
n=0

p∏
j=1

Γ (αj +Ajn)

q∏
j=1

Γ (βj +Bjn)

zn

n!

for z ∈ C, where αj , βk ∈ C, Aj , Bk 6= 0, j = 1, p, k = 1, q and the series
converges for 1 +

∑q
j=1 Bj −

∑p
j=1 Aj > 0.

• PWMs: From Section 6.5, we have

ρs,r =
Γ (1 + s/b)

as

∞∑
k,l=0

k∑
j=0

[
(k + r + j + 1) ak,j

cl (k + r + j + 1)

(l + 1)s/b

− (k + r + j + 2) bk,j
cl (k + r + j + 2)

(l + 1)s/b

]
.
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• Order statistics: From Section 6.6, the qth moments of Xi:n for the CGcTW
distribution can be written as

E (Xq
i:n) =

Γ (1 + q/b)

aq

∞∑
k,l=0

k∑
j=0

n−i∑
s=0

[
(k + s+ i+ j) a∗∗k,s

cl (k + s+ i+ j)

(l + 1)q/b

− (k + s+ i+ j + 1) b∗∗k,s
cl (k + s+ i+ j + 1)

(l + 1)q/b

]
.

8. Maximum likelihood estimation

In this section, we consider estimation of the unknown parameters of the CGcT-
G family from complete samples by maximum likelihood. Let x1, . . . , xn be a random
sample from this family with parameters θ, λ and ϕ. Let ξ = (λ, θ, ϕᵀ)ᵀ be the p × 1
parameter vector. Then, the log-likelihood function for ξ, say ` = ` (ξ), is given by

` = n log θ +

n∑
i=0

log g (x;ϕ) +

n∑
i=0

log si − 2

n∑
i=0

log pi,(8.1)

where si = 1 +λ− 2λG (xi;ϕ), pi = 1 + (θ − 1)G (xi;ϕ)
[
1 + λG (xi;ϕ)

]
and G (xi;ϕ) =

1−G (xi;ϕ).

The score vector components, U (ξ) = ∂`
∂ξ

=
(
∂`
∂θ
, ∂`
∂λ
, ∂`
∂ϕk

)ᵀ
= (Uθ, Uλ, Uϕk )ᵀ, are

given by

Uθ =
n

θ
−

n∑
i=0

2

pi
G (xi;ϕ)

[
1 + λG (xi;ϕ)

]
,

Uλ =

n∑
i=0

1− 2G (xi;ϕ)

si
− (θ − 1)

n∑
i=0

2

pi
G (xi;ϕ)G (xi;ϕ)

and

Uϕk =

n∑
i=0

g′k (xi;ϕ)

g (xi;ϕ)
− 2λ

n∑
i=0

G′k (xi;ϕ)

si

− (θ − 1)

n∑
i=0

2

pi

{
λG (xi;ϕ)G

′
k (xi;ϕ) +G′k (xi;ϕ)

[
1 + λG (xi;ϕ)

]}
,

where g′k (xi;ϕ) = ∂g (xi;ϕ) /∂ϕk and G′k (xi;ϕ) = ∂G (xi;ϕ) /∂ϕk for k = 1, ..., p− 2.
Setting the nonlinear system of equations Uθ = Uλ = Uϕk = 0 and solving them

simultaneously yields the maximum likelihood estimate (MLE) ξ̂ = (θ̂, λ̂, ϕ̂ᵀ)ᵀ of ξ =
(θ, λ, ϕᵀ)ᵀ. These equations cannot be solved analytically and a statistical software can
be used to solve them numerically using iterative methods such as the Newton-Raphson
type algorithms.

The MLEs can also be obtained by maximizing (8.1) directly by using R (optim func-
tion), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine) or a MATHCAD program.
In Sections 9 and 10, we used the optim function in R. We maximized (8.1) using a
wide range of starting values. The starting values were taken in a �ne scale. For the
CGcTW distribution, for example, they were taken to correspond to all combinations of
α = 1, 2, . . . , 10, β = 1, 2, . . . , 10, θ = 0.1, 0.2, . . . , 0.9 and λ = −0.9,−0.7, . . . , 0.9. For
the CGcTLi distribution, for example, the starting values were taken to correspond to
all combinations of α = 1, 2, . . . , 10, θ = 0.1, 0.2, . . . , 0.9 and λ = −0.9,−0.7, . . . , 0.9.
The call to optim converged about 98 percent of the time. When the calls to optim did
converge, the maximum likelihood solution was unique. The unique solution was veri�ed
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by using the PROC NLMIXED function in SAS. None of the unique solutions corresponded
to boundaries of the parameter spaces.

We experimented maximization of (8.1) for a wide range of choices for G that are
smooth (smooth in the sense of continuity and di�erentiability) and for a wide range of
starting values. The reported observations held for each choice. That is, optim converged
about 98 percent of the time, the maximum likelihood solution was unique when optim did
converge and none of the unique solutions corresponded to boundaries of the parameter
spaces. Generally, the likelihood surface was smooth whenever G was smooth.

For asymptotic interval estimation of the model parameters, we require the observed
information matrix, whose elements are given by

Uθθ = −n
θ2

+
∑n
i=0

2
p2
i
G2 (xi;ϕ)

[
1 + λG (xi;ϕ)

]2
, Uθλ =

∑n
i=0

−2
p2
i
G (xi;ϕ)G (xi;ϕ) ,

Uθϕk =

n∑
i=0

−2

p2
i

{
λG (xi;ϕ)G

′
k (xi;ϕ) +G′k (xi;ϕ)

[
1 + λG (xi;ϕ)

]}
,

Uλλ = −
n∑
i=0

[1− 2G (xi;ϕ)]2

s2
i

+ (θ − 1)2
n∑
i=0

2

p2
i

G2 (xi;ϕ)G
2

(xi;ϕ) ,

Uλϕk = − (θ − 1)

n∑
i=0

2

p2
i

{
G (xi;ϕ)G

′
k (xi;ϕ) [1 + (θ − 1)G (xi;ϕ)]

+G′k (xi;ϕ)G (xi;ϕ)
}
−

n∑
i=0

2

s2
i

G′k (xi;ϕ)
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and

Uϕkϕj =

n∑
i=0

1

g2 (xi;ϕ)

[
g (xi;ϕ) g′′kj (xi;ϕ)− g′k (xi;ϕ) g′j (xi;ϕ)

]
−λ

n∑
i=0

2

s2
i

[
siG

′′
kj (xi;ϕ) + 2λG′k (xi;ϕ)G′j (xi;ϕ)

]
−λ (θ − 1)

n∑
i=0

2

p2
i

G (xi;ϕ)G
′′
kj (xi;ϕ) + λG′j (xi;ϕ)G

′
k (xi;ϕ)

−λ (θ − 1)

n∑
i=0

2

p2
i

G′k (xi;ϕ)G
′
j (xi;ϕ) +G′′kj (xi;ϕ)

[
1 + λG (xi;ϕ)

]
− (θ − 1)2

n∑
i=0

2

p2
i

G2 (xi;ϕ)G
′′
kj (xi;ϕ)

[
1 + λG (xi;ϕ)

]
−λ (θ − 1)2

n∑
i=0

2

p2
i

G (xi;ϕ)G′j (xi;ϕ)G
′
k (xi;ϕ)

[
1 + λG (xi;ϕ)

]
−λ (θ − 1)2

n∑
i=0

2

p2
i

G (xi;ϕ)G′k (xi;ϕ)G
′
j (xi;ϕ)

[
1 + λG (xi;ϕ)

]
−λ (θ − 1)2

n∑
i=0

2

p2
i

G (xi;ϕ)G′′kj (xi;ϕ)
[
1 + λG (xi;ϕ)

]2
+λ2 (θ − 1)2

n∑
i=0

2

p2
i

G2 (xi;ϕ)G
′
k (xi;ϕ)G

′
j (xi;ϕ)

+λ (θ − 1)2
n∑
i=0

2

p2
i

G (xi;ϕ)G′j (xi;ϕ)G
′
k (xi;ϕ)

[
1 + λG (xi;ϕ)

]
+λ (θ − 1)2

n∑
i=0

2

p2
i

G (xi;ϕ)G′k (xi;ϕ)G
′
j (xi;ϕ)

[
1 + λG (xi;ϕ)

]
+ (θ − 1)2

n∑
i=0

2

p2
i

G′k (xi;ϕ)G′j (xi;ϕ)
[
1 + λG (xi;ϕ)

]2
,

where k, j = 1, ..., p − 2, g′j (xi;ϕ) = ∂g (xi;ϕ) /∂ϕj , g
′′
kj (xi;ϕ) = ∂2g (xi;ϕ) /∂ϕk∂ϕj ,

G′j (xi;ϕ) = ∂G (xi;ϕ) /∂ϕj and G
′′
kj (xi;ϕ) = ∂2G (xi;ϕ) /∂ϕk∂ϕj .

Under standard regularity conditions when n → ∞, the distribution of ξ̂ can be ap-

proximated by a multivariate normalNp(0, J(ξ̂)−1) distribution to construct approximate

con�dence intervals for the parameters. Here, J(ξ̂) is the total observed information ma-

trix evaluated at ξ̂. The method of re-sampling bootstrap can be used for correcting the
biases of the MLEs of the model parameters. Interval estimates may also be obtained
using the bootstrap percentile method. Likelihood ratio tests can be performed for the
proposed family of distributions in the usual way.

9. Applications

We provide two applications to real data to illustrate the �exibility of the CGcTW
and CGcTLi models introduced in Section 5. We determine the MLEs of the model
parameters and their standard errors. The goodness-of-�t statistics for these models
are compared with other competitive models. In order to compare the �tted models,
we consider some goodness-of-�t measures including the Akaike information criterion
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(AIC), consistent Akaike information criterion (CAIC), Hannan-Quinn information cri-

terion (HQIC), Bayesian information criterion (BIC), −2̂̀, where ̂̀ is the maximized
log-likelihood, Anderson-Darling (A∗) and Cramér-von Mises (W ∗) statistics. These
statistics are widely used to determine how closely a speci�c cdf �ts the empirical dis-
tribution of a given data set. Generally, the smaller these statistics are, the better the
�t.

9.1. The data sets. The �rst data set refers to nicotine measurements made from
several brands of cigarettes in 1998, collected by the Federal Trade Commission, which
is an independent agency of the US government, whose main mission is the promotion
of consumer protection. The report entitled tar, nicotine, and carbon monoxide of the
smoke of 1,206 varieties of domestic cigarettes for the year of 1998 consists of the data sets
and some information about the source of the data, smokers behavior and beliefs about
nicotine, tar and carbon monoxide contents in cigarettes. The free form data set can
be found at http://pw1.netcom.com/rda vis2/smoke.html. These data have been used by
A�fy et al. (2016c) to �t the Marshall-Olkin additive Weibull distribution. The second
data set corresponds to uncensored observations on the breaking stress of carbon �bres
(in Gba) as reported in Cordeiro et al. (2014).

9.2. The �tted models. We shall compare the �ts of the CGcTW and CGcTLi
distributions with those of other competitive models to both data sets.

Tables 1 and 3 provide the values of −2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and A∗

for models �tted to both data sets. The MLEs and their corresponding standard errors
(in parentheses) for the �tted models are reported in Tables 2 and 4. These numerical
results are obtained using the Mathcad program.

In Table 1, we compare the �ts of the CGcTW model with the Kw-TEMW, TEMW,
TEWG, TAW, Kw-MW, BW, Kw-W and AW models to the nicotine data. We note that
the CGcTW distribution has the lowest values for all goodness-of-�t statistics among all
�tted models. So, the CGcTW model could be chosen as the best model to explain the
nicotine data.

In Table 3, we compare the �ts of the CGcTLi model with the Kw-Li, WLi, WG,
BLi, OLL-Li, BW and GT-Li models to the carbon �bres data. The �gures in this table

reveal that the CGcTLi model has the lowest values for −2̂̀AIC, CAIC, HQIC, BIC,
W ∗ and A∗ statistics among all �tted models to these data. Then, the CGcTLi model
can be chosen as the best model.

It is quite clear from the �gures in Tables 1 and 3 that the CGcTW and CGcTLi
distributions provide the best �ts to both data sets. So, these new distributions can be
better models than other competitive distributions. The plots of the �tted CGcTW and
CGcTLi pdfs and other �tted pdfs discussed before are displayed in Figures 3 and 4.
These plots also reveal that the CGcTW and CGcTLi distributions provide the best �ts
to both data sets. Figures 5 and 6 display the �tted cdfs and the QQ plots for both the
CGcTW and CGcTLi models. It is evident from these plots that the two models provide
closer �ts to the two data sets.
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Table 1. The statistics−2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and A∗

for the nicotine data.

Model −2̂̀ AIC CAIC HQIC BIC W ∗ A∗

CGcTW 212.777 220.777 220.894 226.903 236.162 0.34713 1.92288
Kw-TEMW 215.674 229.674 230.005 240.396 256.599 0.37863 2.08814
TEMW 215.967 225.967 226.143 233.625 245.199 0.38319 2.14169
TEWG 216.832 226.832 227.009 234.491 246.064 0.4391 2.38503
TAW 217.393 227.393 227.569 235.051 246.625 0.37208 2.08766

Kw-MW 221.938 231.938 232.114 239.596 251.17 0.43426 2.52687
BW 225.173 233.173 233.29 239.3 248.559 0.49664 2.89774
Kw-W 226.184 234.184 234.302 240.311 249.57 0.5325 3.08454
AW 226.581 234.581 234.698 240.707 249.966 0.55222 3.17512
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Figure 3. Fitted pdfs of the CGcTW distribution and other models
for the nicotine data.
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Table 2. MLEs and their standard errors (in parentheses) for the
nicotine data.

Model Estimates

CGcTW
α̂= 2.0778

(0.635)
β̂= 1.5694

(0.309)
θ̂= 0.1218

(0.124)
λ̂= −0.2907

(0.529)

BW
α̂= 0.6686

(0.578)
β̂= 3.1645

(0.426)

â= 0.7784
(0.163)

b̂= 3.0922
(8.174)

Kw-W
α̂= 0.6157

(0.392)
β̂= 3.1187

(0.698)

â= 0.8395
(0.233)

b̂= 3.7931
(6.921)

AW
α̂= 1.135
(0.062)

β̂= 0.3084
(0.1)

γ̂= 0.0002
(0.001369)

θ̂= 2.7219
(0.114)

Kw-TEMW
α̂= 0.113

(0.22)
β̂= 2.316

(0.62)

γ̂= 1.436
(1.71)

α̂= 2.033
(1.145)

λ̂= −0.902
(0.197)

â= 0.47
(0.213)

b̂= 1.079
(1.828)

TEMW
α̂= 0.6977

(0.492)
β̂= 2.5908

(0.265)

γ̂= 1.1925
(0.259)

α̂= 1.5007
(0.487)

λ̂= −0.6328
(0.228)

TEWG
α̂= 9.5829

(6.182)
β̂= 0.8057

(0.155)
θ̂= 3.1388

(1.464)

p̂= 0.9841
(0.011)

λ̂= −0.0876
(0.449)

TAW
α̂= 1.2252

(0.239)
β̂= 0.8994

(0.091)

γ̂= 0.433
(0.229)

θ̂= 2.6404
(0.267)

λ̂= −0.8831
(0.147)

Kw-MW
α̂= 0.6145

(0.09)
β̂= 0.4466

(0.364)

γ̂= 0.5622
(0.353)

â= 4.3285
(3.595)

b̂= 6.7039
(6.728)

Table 3. The statistics−2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and
A∗for the carbon �bres data.

Model −2̂̀ AIC CAIC HQIC BIC W ∗ A∗

CGcTLi 169.976 175.976 176.364 178.572 182.545 0.051 0.298
Kw-Li 171.419 177.419 177.807 180.015 183.988 0.079 0.469
WLi 171.570 177.570 177.957 180.166 184.139 0.079 0.483
WG 171.957 179.957 180.613 183.418 188.716 0.083 0.517
BLi 175.019 181.019 181.406 183.615 187.588 0.144 0.768

OLL-Li 175.993 179.993 180.183 181.723 184.372 0.160 0.845
BW 184.150 192.150 192.806 195.611 200.909 0.275 1.505
GT-Li 187.590 195.590 196.249 199.054 204.352 0.308 1.684
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Figure 4. Fitted pdfs of the CGcTLi distribution and other models
for the carbon �bres data.

Table 4. MLEs and their standard errors (in parentheses) for the
carbon �bres data.

Model Estimates

OLL-Li
â= 2.963
(0.313)

α̂= 0.488
(0.017)

CGcTLi
θ̂= 0.0075

(0.002)
λ̂= 0.999

(8.840 · 10−10)

α̂= 1.211
(0.052)

Kw-Li
â= 2.320
(0.283)

b̂= 1.031
(3.010)

α̂= 0.052
(0.043)

WLi
â= 20.266
(44.463)

b̂= 2.278
(0.224)

α̂= 0.219
(0.109)

BLi
â= 3.648
(0.631)

b̂= 2.687 · 104

(8.673)

α̂= 0.004
(0.0006)

WG
â= 1.265
(3.376)

b̂= 2.149
(3.461)

α̂= 1.315
(3.472)

β̂= 0.3021
(0.994)

BW
â= 3.124
(1.103)

b̂= 0.102
(0.0131)

α̂= 2.334
(0.002)

β̂= 1.051
(0.002)

GT-Li
â= 7.046
(1.796)

λ̂= 0.0002
(0.118)

b̂= 3.339
(0.207)

α̂= 1.246
(0.109)
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10. Simulation Study

In this section, we evaluate the performance of the maximum likelihood method
for estimating the CGcTW and CGcTLi parameters using a Monte Carlo simulation study
with 1, 000 replications. We calculate the mean square errors (MSEs) of the parameter
estimates, estimated average lengths (ALs) and coverage probabilities (CPs) using the R
software.

We generate N = 1, 000 samples of sizes n = 50, 55, . . . , 1000 from the CGcTW
distribution with θ = λ = α = β = 0.5. The numerical results for the above measures
are shown in the plots of Figures 7. It is noted, from these plots, that the estimated
biases decrease when the sample size n increases. Further, the estimated MSEs decay
toward zero as n increases. This fact reveals the consistency property of the MLEs. The
CPs are near to 0.95 and approach to the nominal value when the sample size increases.
Moreover, if the sample size increases, the ALs decrease in each case.

For the CGcTLi distribution, we consider the following combinations: I: θ = 0.3, α =
0.5, λ = 0.5; II: θ = 0.2, α = 1, λ = 1; III: θ = 0.7, α = 2.5, λ = 1.5; IV: θ = 0.9, α =
3, λ = 2.

Let (θ̂, α̂, λ̂) be the MLEs of the CGcTLi parameters and (sθ̂, sα̂, sλ̂) be the standard
errors of the MLEs. The MSEs, ALs and CPs can be estimated by the following equations:

MSEε (n) =
1

N

N∑
i=0

(ε̂i − ε) , ALε (n) =
3.919928

N

N∑
i=0

sε̂i

and

CPε (n) =
1

N

N∑
i=0

I (ε̂i − 1.9599sε̂i , ε̂i + 1.9599sε̂i)

The empirical results are given in Table 5. The �gures in this table indicate that the
estimates are quite stable and, more importantly, are close to the true parameter values
for these sample sizes.
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Figure 7. Estimated CPs, biases, MSEs and ALs of the selected pa-
rameter vector.
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Table 5: Means, MSEs, ALs and
CPs of the estimates under the maximum likelihood method for the CGcTLi distribution.

n Mean MSE AL CP

θ α λ θ α λ θ α λ θ α λ

50 0.403 0.514 0.699 0.282 0.013 0.537 1.257 0.346 1.479 0.753 0.963 0.857

100 0.402 0.497 0.648 0.153 0.006 0.127 0.975 0.257 1.305 0.864 0.887 0.863

I 250 0.341 0.502 0.594 0.038 0.005 0.064 0.645 0.193 0.747 0.988 0.950 0.922

500 0.328 0.500 0.514 0.015 0.002 0.010 0.438 0.109 0.683 0.940 0.934 0.938

1000 0.298 0.500 0.512 0.005 0.0008 0.005 0.316 0.084 0.346 0.922 0.931 0.951

50 0.726 0.694 1.764 0.563 0.003 1.253 1.874 0.246 1.463 0.938 0.948 0.849

100 0.574 0.804 1.821 0.113 0.001 0.984 1.146 0.143 0.843 0.940 0.953 0.876

II 250 0.540 0.872 1.582 0.044 0.0007 0.126 0.734 0.112 0.479 0.941 0.951 0.907

500 0.518 0.986 1.233 0.019 0.0003 0.039 0.498 0.089 0.246 0.943 0.951 0.931

1000 0.504 0.999 1.041 0.009 0.0001 0.108 0.345 0.041 0.069 0.943 0.952 0.948

50 0.642 2.709 1.996 0.031 0.395 0.943 0.646 2.186 1.250 0.877 0.934 0.862

100 0.658 2.553 1.865 0.015 0.135 0.741 0.378 1.452 1.114 0.941 0.964 0.905

III 250 0.689 2.537 1.684 0.003 0.054 0.493 0.213 0.873 0.951 0.934 0.969 0.934

500 0.692 2.516 1.602 0.001 0.028 0.342 0.145 0.642 0.776 0.936 0.955 0.945

1000 0.699 2.504 1.523 0.0006 0.012 0.204 0.065 0.463 0.542 0.947 0.948 0.946

50 0.837 3.184 2.909 0.025 0.199 0.952 0.675 1.507 1.466 0.946 0.963 0.895

100 0.874 3.036 2.883 0.012 0.115 0.760 0.383 1.301 1.377 0.936 0.957 0.919

IV 250 0.889 3.022 2.512 0.004 0.0461 0.355 0.224 0.756 0.950 0.932 0.941 0.942

500 0.895 2.997 2.305 0.001 0.018 0.196 0.137 0.662 0.755 0.953 0.936 0.945

1000 0.898 3.011 2.085 0.0007 0.011 0.097 0.076 0.358 0.362 0.969 0.922 0.952
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The �gures in Table 5 indicate that the MSEs decrease when n increases. The
simulation study also reveals that the maximum likelihood method is appropriate for es-
timating the CGcTLi parameters. In fact, the MSEs of the parameters tend to be closer
to zero when n increases. This fact supports that the asymptotic normal distribution
provides an adequate approximation to the �nite sample distribution of the MLEs. The
normal approximation can often be improved by using bias adjustments to these estima-
tors. The CPs are near to 0.95. When the sample size increases, the CPs approach to
the nominal value. The ALs decrease for all cases.

11. Conclusions

The idea of generating new extended models from classic ones has been of great
interest among researchers in the past decade. We have proposed a new complementary
geometric transmuted-G (CGcT-G) family of distributions, which extends the transmuted
class (Shaw and Buckley, 2007) by adding two extra shape parameters. Many well-known
distributions emerge as special cases of the proposed family by using special parameter va-
lues. We have provided some mathematical properties of the new family including explicit
expansions for the ordinary and incomplete moments, quantile and generating functions,
Rényi and Shannon entropies, order statistics and probability weighted moments. The
maximum likelihood estimation of the model parameters has been investigated and the
observed information matrix has been determined. By means of two real data sets, we
have veri�ed that special cases of the CGcT-G family can provide better �ts than other
models generated from well-known families.



1371

Appendix A: Important background
Let r(t) be the pdf of a random variable T ∈ [a, b] for −∞ < a < b < ∞ and let

W [H(x)] be a function of the cdf of a random variable X such that W [H(x)] satis�es
the following conditions:


(i) W [H(x)] ∈ [a, b] ,

(ii) W [H(x)] is di�erentiable and monotonically non-decreasing, and

(iii) W [H(x)]→ a as x→ −∞ and W [H(x)]→ b as x→∞.

Recently, Alzaatreh et al. (2013) de�ned the T-X family of distributions by

F (x) =

∫ W [H(x)]

a

r(t) dt,(11.1)

where W [H(x)] satis�es the above conditions. The pdf corresponding to (11.1) is given
by

f(x) =

{
d

dx
W [H(x)]

}
r { W [H(x)]} .(11.2)

For the complementary exponential-geometric (CEGc) distribution introduced by Louzada-
Neto et al. (2011), the pdf and cdf are, respectively, given by

f(x) =
αθ exp (−αx)

[θ + (1− θ) exp (−αx)]2

and

F (x) =
θ [1− exp (−αx)]

θ + (1− θ) exp (−αx)
,

where α > 0 is the scale parameter and 0 < θ < 1 is the shape parameter.
For W [H(x)] = − log [1−H (x;ϕ)] and r(t) the pdf of the CEGc distribution with

α = 1, we de�ne the cdf of the new complementary geometric-H (CGc-H) family of
distributions by

F (x; θ,ϕ) =

∫ − log[1−H(x;ϕ)]

0

θ exp (−t)
[θ + (1− θ) exp (−t)]2

dt

=
θH (x;ϕ)

1− (1− θ)H (x;ϕ)
, θ ∈ (0, 1) ,(11.3)

where H (x;ϕ) is the baseline cdf depending on a parameter vector ϕ and θ ∈ (0, 1) is
an additional shape parameter. The pdf corresponding to (11.3) becomes

f (x; θ,ϕ) =
θh (x;ϕ)

[1− (1− θ)H (x;ϕ)]2
.

Appendix B: Existing literature
The pdfs of the competitive distributions used in the application section are given

below:

• The Kw-TEMW pdf given by

f (x) = abαe−αx−γx
β (
α+ γβxβ−1

) [
1 + λ− 2λ

(
1− e−αx−γx

β
)α]

×
(

1− e−αx−γx
β
)aα−1 [

1 + λ− λ
(

1− e−αx−γx
β
)α]a−1

×

{
1−

[
1+λ−λ

(
1−e−αx−γx

β
)α]a

(
1−e−αx−γxβ

)−aα
}b−1

.
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• The TEMW pdf given by

f (x) = α
(
α+ γβxβ−1

)
e−αx−γx

β
(

1− e−αx−γx
β
)α−1

×
[
1 + λ− 2λ

(
1− e−αx−γx

β
)α]

.

• The TEWG pdf given by

f (x) = θ(1−p)βαβxβ−1 exp e−(αx)β{
1−p

[
1−e−(αx)β

]θ}2

[
1− e−(αx)β

]θ−1

1 + λ− 2λ
(1−p)

[
1−e−(αx)β

]θ
1−p

[
1−e−(αx)β

]θ
 .

• he TAW pdf given by

f(x) =
(
αθxθ−1 + γβxβ−1

)
e−αx

θ−γxβ
[
1− λ+ 2λe−αx

θ−γxβ
]
.

• The Kw-MW pdf given by

f (x) = abγ (β + αx)xβ−1eαx−γx
βeαx

(
1− e−γx

βeαx
)a−1

×
[
1−

(
1− e−γx

βeαx
)a]b−1

.

• The BW pdf given by

f (x) = βαβ

B(a,b)
xβ−1e−b(αx)β

[
1− e−(αx)β

]a−1

.

• The Kw-W pdf given by

f (x) = abβαβxβ−1 e−(αx)β
[
1− e−(αx)β

]a−1 {
1−

[
1− e−(αx)β

]a}b−1

.

• The AW pdf given by

f(x) =
(
αθxθ−1 + γβxβ−1

)
e−αx

θ−γxβ .
• The WLi pdf given by

f(x) = abα2

1+α
(1 + x)e−αx

(1− 1+α+αx
1+α

e−αx)b−1

( 1+α+αx
1+α

e−αx)b+1 e
−a
[

1− 1+α+αx
1+α

e−αx

1+α+αx
1+α

e−αx

]b
.

• The WG pdf given by

f(x) = abβ−α

Γ(α)
xα−1e−x/β [γ(α,x/β)/Γ(α)]b−1

[1−γ(α,x/β)/Γ(α)]b+1 e
−a
[
γ(α,x/β)/Γ(α)

1−γ(α,x/β)/Γ(α)

]b
.

• The OLL-Li pdf given by

f(x) = aα2

1+α
(1 + x)e−αx

(1− 1+α+αx
1+α

e−αx)a−1( 1+α+αx
1+α

e−αx)a−1

[(1− 1+α+αx
1+α

e−αx)a+( 1+α+αx
1+α

e−αx)a]2
.

• The GT-Li pdf given by

f(x) = α2e−αx

1+α
(1 + x)

[
1− 1+α+αx

1+α
e−αx

]a−1

×
{
a (1 + λ)− λ (a+ b)

[
1− 1+α+αx

1+α
e−αx

]b}
.

• The Kw-Li pdf given by

f (x) = abα2(1+x)
(1+α)

e−αx
[
1− 1+α+αx

1+α
e−αx

]a−1 {
1−

[
1− 1+α+αx

1+α
e−αx

]a}b−1

.

• The BLi pdf given by

f (x) = α2(1+x)
B(a,b)(1+α)

e−αx
{

1+α+αx
1+α

e−αx
}b−1 [

1− 1+α+αx
1+α

e−αx
]a−1

.

The parameters of the pdfs above are all positive real numbers except for the param-
eters λ and p, where |λ| ≤ 1 and p ∈ [0, 1).
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