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ABSTRACT 

 

The paper presents simulations of a continuous cantilever beam and an unbalanced disk system by extending 

classical Jeffcott rotor approach to a model that gives the first three (or more) modes of the flexible beam. 
Normal modes of a constrained structure method are used to develop the equations of motion including 

gyroscopic effects. Centrifugal force created by the unbalanced mass of the disk is considered as a constraint for 

the flexible beam.  The first three modes of the flexible beam having an unbalanced disk are taken into 
consideration, which cannot be found through the classical Jeffcott rotor modeling. Hence, the model computes 

the first three natural frequencies of the rotor, and presents a very good correspondence with the first natural 

frequency obtained by the Jeffcott model. The change in the natural frequencies with respect to the disk mass to 
shaft mass ratio and the disk diameter to shaft length ratio are computed and presented. Instability problem due 

to inertial effects is encountered if these two ratios are kept high; which cannot be predicted by the classical 

Jeffcott rotor model.  
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1. INTRODUCTION 

Unbalanced masses are the main causes of the vibration 

in rotating machinery. Rankine (1869) is credited as 

being the first to realize the influence of unbalance on 

rotating shafts, which is the main source of centrifugal 

forces in such systems. These forces cause large whirl 

amplitudes when the shaft is rotated at its natural 

frequency, which is also called as critical speed. Foppl 

(1895) modeled the rotor as a single disk centrally 

located on a shaft without damping while Jeffcott 

(1919) studied the same model with damping, and 

rotors modeled in this fashion are called Jeffcott rotor 

models [1-3]. 

The approaches to establish models for rotordynamics 

vary in the literature, and it is beyond the scope of this 

work to give a detailed portrait of the modeling 
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methodologies present. Instead, several approaches will 

be cited here, and the interested reader should refer to 

references [4-8]. For instance, Genta [9] used the finite 

element method based on complex coordinates to 

investigate the whirling of unsymmetrical rotors for a 

general multi degree of freedom rotor, and resulted in a 

simpler set of equations and hence had advantages in 

simulations of undamped axisymmetrical systems. 

Kessler [10] developed a method involving complex 

modal analysis to investigate rotating systems, where 

the natural mode of the rotor was assumed to be the sum 

of sub-modes rotating in opposite directions. In that 

way, complex analysis of free and forced vibration of 

anisotropic systems was realized. Campos et al. [11], on 

the other hand, developed a Jeffcott model using bond 

graphs method based on Lagrange, compared the model 

with Hamilton’s method, and concluded that the bond 

graph approach requires less tedious work and can be 

applied to more complex systems. Lately, Khanlo et al. 

[12] modeled a rotating flexible continuous shaft-disk 

system with assumed modes method to analyze chaotic 

vibration due to rub-impact.  

Although a vast amount of research on Jeffcott model 

exists in the literature, the continuous beams in their 

models are unfortunately considered with their 

equivalent stiffness or elasticity but with the first mode 

only. In this study, however, the method is further 

extended to a system where Jeffcott rotor model is 

considered as a disk supported by a continuous flexible 

cantilever beam (shaft). The first three modes of the 

continuous shaft are taken into account as opposed to 

the classical Jeffcott rotor, which gives only the first 

mode approximately. The equations are developed 

accordingly by using normal modes of a constraint 

structure method including gyroscopic effects. 

Eigenvalue analysis is performed with respect to the 

disk-mass to shaft-mass ratio and for disk-diameter to 

shaft-length ratio. Consequently, this paper extends the 

classical Jeffcott model to a new one that makes 

possible to compute more than one mode of vibration 

by assuming a flexible beam in its model.  

 

2. FORMULATION 

 

Figure 1 shows a Jeffcott rotor model on a cantilever 

flexible beam with a thin disk at the tip. The shaft has a 

length of L and diameter of d, while the thin disk has a 

diameter of D.  

 

 

 

 

 

 

 

 

 

Figure 1. Jeffcott rotor supported by a cantilever flexible beam. 

 

Figure 2 shows the side-view of the rotating disk in 

whirl, where the inertial coordinate axes and the 

rotating coordinate axes attached to the disk are 

respectively shown as OXY and Oxy. The letter S on the 

disk represents the geometric center, G the mass center 

of the disk, OS=r the whirl radius, SG=e the mass 

eccentricity, md the disk mass, ψ the disk rotation angle, 

θ the whirl angle.  
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Figure 2. Side view of the rotating disk. 

 

The dynamic equations of the motion are obtained via 

the method of normal modes of constrained structures 

[13]. Deflection of the flexible beam in x and y 

directions can be written in terms of an orthogonal 

modes as ���, �� = ∑ 	
���
 ��
���   (1) 


��, �� = ∑ 	
�����
���
    (2) 

where qi  is the ith generalized coordinate and 	
 is the 

ith orthogonal mode.   

Kinetic energy of the shaft in y direction can be 

expressed as  

� = ��� 
� ���, ��������� =�� ��∑ �

 ���
�   (3) 

The generalized masses are then defined as  

�
 = � 	
������������� = �� � 	
��������  (4) 

Here ms is the shaft mass per unit length which is 

assumed constant, while the potential energy of the 

shaft in y direction is 

� = ��� ��
�����, ���� �� = ��∑ �
��
�
   (5) 

The generalized stiffness in this equation is defined as 

�
 = � ��	
����������    (6) 

where EI is the shaft rigidity. If there is concentrated 

force or moment acting at the tip of the beam, the 

generalized force can then be found by the principle of 

virtual work. 

If Lagrange equation is used and viscous damping is 

assumed for the elastic beam, then the equations for the 

generalized coordinates in the x and y directions can be 

obtained as follows; 

���
 + 2"
#
���
 + #
���
 = �$% &'��(, ��	
�(� +���(, ��	′
�(�*    (7) 

���
 + 2"
#
���
 +#
���
 = �$% &'��(, ��	
�(� −���(, ��	′
�(�*    (8) 

The moments, including the gyroscopic effect, are given 

as 

�� = �, ∑���
	
� + 2�, ∑���
	
�-�   (9a) 

�� = �, ∑���
	
� + 2�, ∑���
	
�-�   (9b) 

where -�  is the rotor angular speed. 

If a circular cross section is assumed for the flexible 

beam, then the natural frequencies, damping ratios, and 

vibration modes in the x and y directions will be the 

same, but the forces and moments in the x and y 

directions may differ. 

The centrifugal force caused by the eccentric mass md 

of the disk is assumed to be acting as a concentrated 

force at the location z=L. The position vector of mass 

md with respect to the rotating frame Oxy is  ./ = �� + 0 cos-�4 + �
 + 0 sin-�7  (10) 

The acceleration of the disk can be found by taking the 

second derivative of equation (10) with respect to time 

as 
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.�/ = 8�� − 0-� sin- − 0-� � cos-94 + 8
� + 0-� cos- −0-� � sin-97    (11) 

When x and y components of the inertial force is 

substituted into the equations (8) and (9) the following 

equations are obtained. 

���
 + 2"
#
���
 + #
���
 = −:;$% 8∑ 	<�(����<< −0-� sin - − 0-� � cos-9	
�(� −																																																							 >;$% 8∑ 	′<�(����<< +2∑ 	′<�(����<-�< 9	′
�(�   (12) 

���
 + 2"
#
���
 +#
���
 = −:;$% 8∑ 	<�(����<< +0-� cos- − 0-� � sin-9	
�(� −																																																						 >;$% 8∑ 	′<�(����<< +2∑ 	′<�(����<-�< 9	′
�(�   (13) 

Assuming only the first three modes for the solution, 

equations (12) and (13) can be written in a matrix form 

as 

?@� + A@� + B@ = C    (14) 

where M, C, and K are respectively the mass, damping, 

and stiffness  matrices while F is the force vector.  

The generalized coordinates are given as @ =D���, ���, ��E, ���, ���, ��EF, while their first and second 

derivatives are represented by vectors @�  and @� , 
respectively.  

The mass matrix is given by 

? = G?� ?�?� ?�H        (15) 

where the sub-matrices are  

?� = I1 + KL�� KL�� KL�EKL�� 1 + KL�� KL�EKLE� KLE� 1 + KLEEM (16) 

?� = N OL��
� L��� L�E�L��� L��� L�E�LE�� LE�� LEE� P.   (17) 

Consequently, the mass ratio, µ, which is defined as the 

disk mass over shaft mass, is one of the important 

parameters for investigations and defined as 

K = :;:Q .    (18) 

Another important parameter, the ratio of disk mass 

moment of inertia to the product of shaft-mass and 

shaft-length squared, is given as 

N = >;:Q�R = ��S :;:Q
TR�R = ��S KU�  (19) 

where the ratio of disk-diameter to shaft-length is 

another parameter to investigate, and given by 

U = T�      (20) 

The damping coefficients matrix is given by 

A = G A� 2-�?�−2-�?� A� H    (21) 

where M2 is the same as the sub mass matrix defined 

above and -�  is the angular speed of the shaft. C1 is 

defined as A� = �VWX�Y2"�#� 2"�#� 2"E#EZ� (21) 

where "�, "�, and "E are the damping ratios for the first, 

second and third modal vibrations.  

The stiffness matrix is 

B = �VWX�Y#�� #�� #E�				#�� #�� #E�Z�   (22) 

where #�, #�, and #E are the first, second and third 

mode natural frequencies of the elastic beam. 

The forcing term on the right hand side of the equation 

(14) can be obtained from 

C = KY[�\� [�\� [E\� 				[�\� [�\� [E\�Z]   (23) 

where  

\� = -� sin - + -� � cos-    (24) 

\� = −-� cos- + -� � sin-    (25) 

In the equations, the generalized coordinates are divided 

by eccentricity e.  

The other parameters used in the equations are defined 

as follows 

L
< = ^%���^_���� ^%R�`�,`ab     (26) 

L′
< = ^�%���^�_���� ^%R�`�,`ab     (27) 

[
 = ^%���� ^%R�`�,`ab     (28) 

where the dimensionless parameter ξ is defined as 

 c = d�     (29) 

The natural frequencies of a flexible cantilever (or 

fixed-free) beam are given 

#
 = �[(�
�e f>:Q�g     (30) 

where the values of βL for the first three modes are 

1.875104, 4.694091, and 7.854757 [14]. The mode 

shapes of a flexible cantilever beam on the other hand 

are given as 

 

	�c� =h isin [
c − sinh[
c − k lmno%�plmnqo%�rslo%�trslq o%�u �cos [
c −cosh[
c�v    (31) 

for 0 < c < 1 [14]. 

The deflection of the rotor center in both x and y 

directions can be calculated from 

��(, �� = ∑ 	
�(���
���E    

     (32) 


�(, �� = ∑ 	
�(���
���E    

     (33)  
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and the whirl radius and whirl angle are calculated from 

y�(, �� = z���(, �� + 
��(, ��   

     (34) 

{�(, �� = tant� ���,~����,~�      

     (35) 

To obtain a realistic transient behavior of the rotor 

whirl, rotor speed can be assumed to follow the 

following time function during run-up 

-� = #:�1 − 0t���     
     (36) 

and hence the angular acceleration 

-� = ��] 0t��             (37) 

where #: is the maximum rotor speed, T is the time 

constant of the speed function. After a time of 4T rotor 

will reach 98% of its maximum speed. 

3. SIMULATIONS 

 

In the simulations, the density and the modulus of 

elasticity are taken to be ρ = 7700 kg/m3 and E = 207 

GPa, respectively. The shaft length and the shaft 

diameter are assumed to be L = 1 m and d = 0.01 m. 

The equation (14) can also be written in a closed form 

such as 

�@�@� � = i � �−?t�B −?t�Av �@@� � + � �−?t�C� (38) 

Then, the eigenvalues of the system can be calculated 

from the system matrix of  

� = i � �−?t�B −?t�Av    (39) 

where O is the matrix of zeros and I is the identity 

matrix with appropriate dimensions.  

For the classical Jeffcott rotor model, the natural 

frequencies of the rotor are calculated from 

#� = e���:��     (40) 

where   ��� = Ef>��   and  ��� = �, +0.23�� [14]. The effect of shaft mass is added so as to 

assure not having a natural frequency of infinity for K = :;:Q = 0, which is the case of no disk on the shaft at 

all. The natural frequencies of the rotor with respect to 

the ratio of disk mass to shaft mass µ and the ratio of 

disk diameter to shaft length η are tabulated in Table 1. 

 

Table 1. Natural frequencies of the rotor. 

 µ = 1 µ = 10 

 #�  #� #� #E #�  #� #� #E 

η = 0.1 20.24 19.97 206.76 659.10   9.82 9.55 183.16 609.39 

η = 0.3 20.24 18.19 170.39 578.43   9.82 7.52 87.90 479.71 

η = 0.5 20.24 14.92 122.06 514.74   9.82 4.73 45.69 439.12 

η = 0.7 20.24 11.13 88.42 481.62   9.82 2.81 33.84 424.17 

η = 1.0 20.24 6.72 65.81 441.25   9.82 1.45 28.48 420.15 

 

The natural frequencies of the flexible cantilever (or 

fixed-free) beam without a disk are computed as #�� = 45.58 rad/s, #�� = 285.62 rad/s, and #�E =799.73 rad/s for the given dimensions.  

 

 

 

Figure 3 shows the first three natural frequencies of the 

rotor with respect to the mass ratio µ for different rotor 

diameter to beam length ratio η when the shaft speed -�  
is 2000 rpm. It is preferred here to represent the changes 

in terms of the ratios of masses (µ) and dimensions 

(η=D/L) rather than using an inertia ratio (λ) since the 

inertia would be harder to visualize. 
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Figure 3.  Natural frequencies of the rotor with respect to µ and η (-� = 2000 rpm). 

 

 

When the mass ratio is zero, which is the case of no 

disk at all, all plots start from the natural frequencies of 

the flexible shaft. As the mass ratio increases, natural 

frequencies decrease, but the rate of decrease is 

comparatively low for higher values of mass ratio. All 

the first natural frequency curves obtained for different 

η values stay very close to each other. Although, the 

first natural frequency is not affected by the D/L ratio 

for increasing values of mass ratio µ, the second and 

third natural frequencies are observed to be affected 

with these parameters.  

Another remarkable observation is the instability of the 

system for higher values of µ and/or η, which are 

mainly due to the disk inertia and dimension. For larger 

values of aforementioned parameters, some of the 

eigenvalues of the system become real and positive so 

as to make the system dynamics unstable.  Figure 4 

shows the stable and unstable regions for the selection 

of K and U. Obviously system is stable for relatively 

smaller values of both parameters, and hence safe to 

operate in this region.  

 

0 2 4 6 8 10 12 14 16 18 20
400

600

800

ω
n

3

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

ω
n

2

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

µ = m
d

 / m
s

ω
n

1

η=.1 η=.3 η=.5 η=.7 η=1



 GU J Sci Part:A, 2(1):77-85 (2014)/ O. GUNDOGDU, K. ALNEFAIE, H. DIKEN 83 

 

Figure 4. Stable and unstable regions for a range of µ and η values. 

 

To show the difference between the first natural 

frequency of the continuous shaft-rotor system and the 

natural frequency of the classic Jeffcott rotor model, 

which can be calculated from equation (40), the percent 

errors are depicted in Figure 5 for increasing mass ratio. 

Jeffcott rotor model generally predicts natural 

frequencies higher than the continuous shaft-disk model 

for all mass ratios. While this error is very small for all 

values of η for small µ, it gets much larger for higher 

values of µ. This is basically due to the fact that Jeffcott 

is a very simple approximation of the problem and the 

Jeffcott model does not have the ability to reflect 

neither of the flexible beam theory and gyroscopic 

effects. 
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Figure 5. Percent error plots for the first natural frequency of the continuous shaft-disk system. 

 

4. CONCLUSIONS 

 

This paper develops the model of a disk mounted on a 

continuous flexible-cantilever beam by extending the 

classical Jeffcott rotor model to the first three modes of 

the continuous shaft-disk system, which is not possible 

through the classical Jeffcott rotor model. Equations of 

motion are developed by using the normal modes of a 

constrained structure method with the assumption that 

the inertial force and moment created by the rotating 

disk having mass unbalance are the constraints for the 

continuous beam. The results were compared with the 

classical one and shown to be quite different with the 

inclusion of flexible beam theory and gyroscopic 

effects.   

There are two important parameters of the model: The 

first one is the mass ratio which is defined as the disk-

mass over the shaft-mass. The second parameter is the 

ratio of disk-diameter to shaft-length. The effects of all 

these parameters on stability of the rotor-shaft system 

are investigated and presented in the paper. 

Current model predicts the first natural frequency very 

close to the one obtained from the classical Jeffcott 

rotor model for lower ratios of mass and dimension. 

However it increases with increasing these two ratios; 

especially with the increase of η, the dimensional ratio. 

Beyond the first mode, the model presented in this 

study correctly predicts second and third natural 

frequencies of the system, which can be easily extended 

to find natural frequencies higher than the third one.  

Another important finding is the possibility of 

determining the stability of the system, which is not 

also possible through the classical Jeffcott rotor model. 

By defining eigenvalues of the system one can decide if 

the system is unstable. The system under investigation 

was found to be undergoing to an unstable motion for 

increasing inertia of the disk. 
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