Araştırma Makalesi
BibTex RIS Kaynak Göster

SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye)

Yıl 2024, Cilt: 40 Sayı: 1, 148 - 166, 30.04.2024

Öz

Seismically active regions are always prone to be subjected to earthquake events and their eventual damages to urban areas. Liquefaction is one of the earthquake related incidents occurring within soil bodies during or after earthquake excitations. Gaining the knowledge of liquefaction potential for a site is exceedingly crucial in view of seismic risk mitigation, earthquake hazard assessments and future planning of urban areas. This study evaluates the liquefaction potential of Igdır city located in the eastern-side of Türkiye, having borderlines with three other seismically active countries in the region, Armenia, Nakhichevan and Iran. Soil data (i.e., Standard Penetration Test values, water table, water content, unit weight, grain size distribution and Atterberg limits) at the considered areas within the city is gathered from 85 boreholes. After investigating the fault lines around the city, the two possible maximum peak ground accelerations involved in this study are determined to be 0.393g and 0.225g. Liquefaction susceptibility maps of the areas at the two peak ground acceleration levels are designated in regard to liquefaction potential index and liquefaction severity index methods. The studied areas in the city exhibit various levels of liquefaction susceptibility as the severity is observed to be greater under the larger peak ground acceleration.

Kaynakça

  • Kramer S. L. 1996. Geotechnical earthquake engineering. Pearson Education India
  • Cabalar A. F., Canbolat A., Akbulut N., Tercan S. H., Isik H. 2019. Soil liquefaction potential in Kahramanmaras, Türkiye. Geomatics Natural Hazards and Risk, 10(1), 1822-38. https://doi.org/ 10.1080/19475705.2019.1629106
  • Rouholamin M., Bhattacharya S., Orense R. P. 2017. Effect of initial relative density on the post-liquefaction behaviour of sand. Soil Dynamics and Earthquake Engineering, 97, 25-36. https://doi.org/ 10.1016/j.soildyn.2017.02.007
  • Yoshida N., Tokimatsu K., Yasuda S., Kokusho T., Okimura T. 2001. Geotechnical aspects of damage in Adapazari City during 1999 Kocaeli, Turkey earthquake. Soils and Foundations, 41(4), 25-45. https://doi.org/ 10.3208/sandf.41.4_25
  • Allen J., Bradley B., Green R., Orense R., Wotherspoon L., Ashford S., et al. 2010. Geotechnical reconnaissance of the 2010 Darfield (Canterbury) earthquake. Bulletin of New Zealand Society for Earthquake Engineering, 43(4), 243. https://doi.org/ 10.5459/bnzsee.43.4.243-320
  • Papathanassiou G., Mantovani A., Tarabusi G., Rapti D., Caputo R. 2015. Assessment of liquefaction potential for two liquefaction prone areas considering the May 20, 2012 Emilia (Italy) earthquake. Journal of Environmental Earth Sciences, 189, 1-16. https://doi.org/ 10.1016/j.enggeo.2015.02.002
  • Yasuda S. 2014. Allowable Settlement and Inclination of Houses Defined After the 2011 Tohoku: Pacific Ocean Earthquake in Japan. Geotechnical Geological and Earthquake Engineering, 28, 141-57. https://doi.org/ 10.1007/978-3-319-03182-8_5
  • Sassa S., Takagawa T. 2019. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides, 16(1), 195-200. https://doi.org/ 10.1007/s10346-018-1114-x
  • Cakir, E., Cetin, K. O. 2024. Liquefaction triggering and induced ground deformations at a metallurgical facility in Dörtyol-Hatay after the February 6 Kahramanmaraş earthquake sequence. Soil Dynamics and Earthquake Engineering, 178, 108465. https://doi.org/10.1016/j.soildyn.2024.108465
  • Ozener, P., Monkul, M. M., Bayat, E. E., Ari, A., Cetin, K. O. 2024. Liquefaction and performance of foundation systems in Iskenderun during 2023 Kahramanmaras-Turkiye earthquake sequence. Soil Dynamics and Earthquake Engineering, 178, 108433. https://doi.org/10.1016/j.soildyn.2023.108433
  • Yilmaz C., Silva V., Weatherill G. 2021. Probabilistic framework for regional loss assessment due to earthquake-induced liquefaction including epistemic uncertainty. Soil Dynamics and Earthquake Engineering, 141, 106493. https://doi.org/ 10.1016/j.soildyn.2020.106493
  • Zhang W., Lim K. W., Ghahari S. F., Arduino P., Taciroglu E. 2021. On the implementation and validation of a three-dimensional pressure-dependent bounding surface plasticity model for soil nonlinear wave propagation and soil-structure interaction analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 45(8), 1091-119. https://doi.org/ 10.1002/nag.3194
  • Kiyota T., Koseki J., Sato T., Tsutsumi Y. 2009. Effects of sample disturbance on small strain characteristics and liquefaction properties of holocene and pleistocene sandy soils. Soils and Foundations, 49(4), 509-23. https://doi.org/ 10.3208/sandf.49.509
  • Kiyota T., Maekawa Y., Wu C. 2019. Using in-situ and laboratory-measured shear wave velocities to evaluate the influence of soil fabric on in-situ liquefaction resistance. Soil Dynamics and Earthquake Engineering, 117, 164-73. https://doi.org/ 10.1016/j.soildyn.2018.11.016
  • Lees J. J., Ballagh R. H., Orense R. P., van Ballegooy S. 2015. CPT-based analysis of liquefaction and re-liquefaction following the Canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 79, 304-314. https://doi.org/ 10.1016/j.soildyn.2015.02.004
  • Facciorusso J., Madiai C., Vannucchi G. 2015. CPT-Based Liquefaction Case History from the 2012 Emilia Earthquake in Italy. Journal of Geotechnical and Geoenvironmental Engineering, 141(12). https://doi.org/ 10.1061/(asce)gt.1943-5606.0001349
  • Chern S. G., Lee C. Y. 2009. CPT-based simplified liquefaction assessment by using fuzzy-neural network. Journal of Marine Science and Technology-Taiwan, 17(4), 326-31. https://doi.org/ 10.51400/2709-6998.2024
  • Seed H. B., Idriss I. M. 1971. Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundation Division, 97(SM9), 1249-73. https://doi.org/ 10.1061/JSFEAQ.0001662
  • Youd T. L., Idriss I. M., Andrus R. D., Arango I., Castro G., Chritrian J., et al. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817-33. https://doi.org/ 10.1061/(ASCE)1090-0241(2001)127:10(817)
  • Cetin K. O., Seed H. B., Der Kiureghian A., Tokimatsu K., Harder L., Kayen R., et al. 2004. SPT-Based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-40. https://doi.org/ 10.1016/j.dib.2018.08.043
  • Duman, E. S., Ikizler, S. B., & Angin, Z. E. K. A. I. (2015). Evaluation of soil liquefaction potential index based on SPT data in the Erzincan, Eastern Turkey. Arabian Journal of Geosciences, 8, 5269-5283. https://doi.org/ 10.1007/s12517-014-1550-4
  • Yıldız, Ö. (2022). Seismic site characterization of Battalgazi in Malatya, Turkey. Arabian Journal of Geosciences, 15(9), 867. https://doi.org/10.1007/s12517-022-10170-x
  • Akkaya, İ., Özvan, A., Akin, M., Akin, M. K., & Övün, U. (2018). Comparison of SPT and V s-based liquefaction analyses: a case study in Erciş (Van, Turkey). Acta Geophysica, 66, 21-38. https://doi.org/10.1007/s11600-017-0103-0
  • Avagyan, A., Sosson, M., Sahakyan, L., Sheremet, Y., Vardanyan, S., Martirosyan, M., Muller, C., 2018. Tectonic Evolution of the Northern Margin of the Cenozoic Ararat Basin, Lesser Caucasus, Armenia. J Petr. Geol. 41(4):495-511. https://doi.org/ 10.1111/jpg.12718
  • Turkiye Istatistik Kurumu İl ve ilçelere göre il/ilçe merkezi, belde/köy nüfusu ve yıllık nüfus artış hızı, [online] Available at: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 [Accessed: 17.05.2023]
  • Karaoğlu M., Erdel E. 2022. A Study of Soil and Land Features with Geographic Information Systems (GIS) Analysis: Iğdır, Türkiye. Türkiye Tarımsal Araştırmalar Dergisi, 9(2), 198-208. https://doi.org/ 10.19159/tutad.1076908
  • Koç A., Koç C. 2018. An Assessment through relationship between air pollution and climatic parameters in City of Igdır. Journal of Urban Cultures and Managements, 11(1), 1-10.
  • Öztürk M., Altay V., Altundağ E., Gücel S. 2016. Halophytic plant diversity of unique habitats in Turkey: Salt mine caves of Çankırı and Iğdır. Halophytes for food security in dry lands, Elsevier, 291-315.
  • Bulut F., Bohnhoff M., Eken T., Janssen C., Kilic T., Dresen G. 2012. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. Journal of Geophysics Research-Solid Earth, 117. https://doi.org/ 10.1029/2011jb008966
  • Yavasoglu H., Tari E., Tuysuz O., Cakir Z., Ergintav S. 2011. Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. Journal of Geodynamics, 51(5), 339-43. https://doi.org/ 10.1016/j.jog.2010.07.003
  • Ministry of Disaster and Emergency Management Presidency (AFAD). http://www.deprem.gov.tr/en/event catalogue (accessed at 12 December 2023).
  • Emre Ö., Duman T. Y., Özalp S., Şaroğlu F., Olgun Ş., Elmacı H., et al. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-75. https://doi.org/ 10.1007/s10518-016-0041-2
  • Karakhanian A. S., Trifonov V. G., Philip H., Avagyan A., Hessami K., Jamali F., et al. 2004. Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380(3-4), 189-219. https://doi.org/ 10.1016/j.tecto.2003.09.020
  • Wells D. L., Coppersmith K. J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002. https://doi.org/ 10.1785/BSSA0840040974
  • Ulusay R., Tuncay E., Sonmez H., Gokceoglu C. 2004. An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Engineering Geology, 74(3-4), 265-91. https://doi.org/ 10.1016/j.enggeo.2004.04.002
  • Guzel, Y. 2024. Correlating Measured SPT-N, Shear Wave Velocity and Liquid Limit Values in Melekli Region, Igdır (Türkiye). Journal of Advanced Research in Natural and Applied Sciences, 10(1), 161-174. https://doi.org/10.28979/jarnas.1393352
  • Seed H. B., Idriss I. M. 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundation Division, 97(9), 1249-73.
  • Seed H. B., Tokimatsu K., Harder L. F., Chung R. M. 1985. Influence of spt procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering-ASCE, 111(12), 1425-45.
  • Liao S. S. C., Whitman R. V. 1986. Overburden correction factors for spt in sand. Journal of Geotechnical Engineering-ASCE, 112(3), 373-7. https://doi.org/ 10.1061/(asce)0733-9410(1986)112:3(373)
  • Akin M. K., Kramer S. L., Topal T. 2016. Dynamic soil characterization and site response estimation for Erbaa, Tokat (Turkey). Natural Hazards, 82(3), 1833-68. https://doi.org/ 10.1007/s11069-016-2274-4
  • Seed R. B., Cetin K. O., Moss R. E., Kammerer A. M., Wu J., Pestana J. M., et al. 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
  • Sonmez H. 2003. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol,Turkey). Environmental Geology, 44(7), 862-71. https://doi.org/ 10.1007/s00254-003-0831-0
  • Tosun H., Ulusay R. 1997. Engineering geological characterization and evaluation of liquefaction susceptibility of foundation soils at a dam site, southwest Turkey. Environmental and Engineering Geosciences, 3(3), 389-409. https://doi.org/ 10.2113/gseegeosci.III.3.389
  • Ulusay R., Kuru T. 2004. 1998 Adana-Ceyhan (Turkey) earthquake and a preliminary microzonation based on liquefaction potential for Ceyhan town. Natural Hazards, 32(1), 59-88. https://doi.org/ 10.1023/b:Nhaz.0000026790.71304.32
  • Duman E. S., Ikizler S. B., Angin Z. 2015. Evaluation of soil liquefaction potential index based on SPT data in the Erzincan, Eastern Turkey. Arabian Journal of Geosciences, 8(7), 5269-83. https://doi.org/ 10.1007/s12517-014-1550-4
  • Seed H. B., Idriss I. 1982. Ground motion and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, California.
  • Iwasaki T., Tokida K., Tatsuoka F., Watanabe S., Yasuda S., Sato H. 1981. Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd international conference on microzonation, Seattle, pp. 1310-30.
  • Sonmez H., Gokceoglu C. 2005. A liquefaction severity index suggested for engineering practice. Environmental Geology, 48(1), 81-91. https://doi.org/ 10.1007/s00254-005-1263-9

SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye)

Yıl 2024, Cilt: 40 Sayı: 1, 148 - 166, 30.04.2024

Öz

Sismik olarak aktif bölgeler her zaman deprem olaylarına ve bunların kentsel alanlara nihai zararlarına maruz kalmaya eğilimlidir. Sıvılaşma, deprem uyarımları sırasında veya sonrasında zemin içerisinde meydana gelen olaylardan biridir. Bir sahanın sıvılaşma potansiyeli hakkında bilgi edinmek, sismik riskin azaltılması, deprem tehlikesi değerlendirmeleri ve kentsel alanların gelecekteki planlaması açısından son derece önemlidir. Bu çalışma, Türkiye'nin doğusunda yer alan ve bölgedeki diğer üç sismik olarak aktif ülke olan Ermenistan, Nahçıvan ve İran ile sınırı bulunan Iğdır şehrinin sıvılaşma potansiyelini değerlendirmektedir. Şehir içinde ele alınan alanlardaki zemin verileri (Standart Penetrasyon Testi değerleri, su tablası, su içeriği, birim hacim ağırlık, tane boyutu dağılımı ve Atterberg limitleri) 85 sondaj kuyusundan toplanmıştır. Şehir çevresindeki fay hatları incelendikten sonra, bu çalışmada yer alan iki olası maksimum yer ivmesi 0.393g ve 0.225g olarak belirlenmiştir. En büyük iki yer ivmeleri altında çalışma sahalarının sıvılaşma duyarlılık haritaları, sıvılaşma potansiyel indeksi ve sıvılaşma şiddet indeksi yöntemlerine göre belirlenmiştir. Şehirde incelenen alanlar, maksimum yer ivmesi altında şiddetin daha fazla olduğu gözlemlendiğinden, çeşitli seviyelerde sıvılaşma duyarlılığı sergilemektedir.

Kaynakça

  • Kramer S. L. 1996. Geotechnical earthquake engineering. Pearson Education India
  • Cabalar A. F., Canbolat A., Akbulut N., Tercan S. H., Isik H. 2019. Soil liquefaction potential in Kahramanmaras, Türkiye. Geomatics Natural Hazards and Risk, 10(1), 1822-38. https://doi.org/ 10.1080/19475705.2019.1629106
  • Rouholamin M., Bhattacharya S., Orense R. P. 2017. Effect of initial relative density on the post-liquefaction behaviour of sand. Soil Dynamics and Earthquake Engineering, 97, 25-36. https://doi.org/ 10.1016/j.soildyn.2017.02.007
  • Yoshida N., Tokimatsu K., Yasuda S., Kokusho T., Okimura T. 2001. Geotechnical aspects of damage in Adapazari City during 1999 Kocaeli, Turkey earthquake. Soils and Foundations, 41(4), 25-45. https://doi.org/ 10.3208/sandf.41.4_25
  • Allen J., Bradley B., Green R., Orense R., Wotherspoon L., Ashford S., et al. 2010. Geotechnical reconnaissance of the 2010 Darfield (Canterbury) earthquake. Bulletin of New Zealand Society for Earthquake Engineering, 43(4), 243. https://doi.org/ 10.5459/bnzsee.43.4.243-320
  • Papathanassiou G., Mantovani A., Tarabusi G., Rapti D., Caputo R. 2015. Assessment of liquefaction potential for two liquefaction prone areas considering the May 20, 2012 Emilia (Italy) earthquake. Journal of Environmental Earth Sciences, 189, 1-16. https://doi.org/ 10.1016/j.enggeo.2015.02.002
  • Yasuda S. 2014. Allowable Settlement and Inclination of Houses Defined After the 2011 Tohoku: Pacific Ocean Earthquake in Japan. Geotechnical Geological and Earthquake Engineering, 28, 141-57. https://doi.org/ 10.1007/978-3-319-03182-8_5
  • Sassa S., Takagawa T. 2019. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides, 16(1), 195-200. https://doi.org/ 10.1007/s10346-018-1114-x
  • Cakir, E., Cetin, K. O. 2024. Liquefaction triggering and induced ground deformations at a metallurgical facility in Dörtyol-Hatay after the February 6 Kahramanmaraş earthquake sequence. Soil Dynamics and Earthquake Engineering, 178, 108465. https://doi.org/10.1016/j.soildyn.2024.108465
  • Ozener, P., Monkul, M. M., Bayat, E. E., Ari, A., Cetin, K. O. 2024. Liquefaction and performance of foundation systems in Iskenderun during 2023 Kahramanmaras-Turkiye earthquake sequence. Soil Dynamics and Earthquake Engineering, 178, 108433. https://doi.org/10.1016/j.soildyn.2023.108433
  • Yilmaz C., Silva V., Weatherill G. 2021. Probabilistic framework for regional loss assessment due to earthquake-induced liquefaction including epistemic uncertainty. Soil Dynamics and Earthquake Engineering, 141, 106493. https://doi.org/ 10.1016/j.soildyn.2020.106493
  • Zhang W., Lim K. W., Ghahari S. F., Arduino P., Taciroglu E. 2021. On the implementation and validation of a three-dimensional pressure-dependent bounding surface plasticity model for soil nonlinear wave propagation and soil-structure interaction analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 45(8), 1091-119. https://doi.org/ 10.1002/nag.3194
  • Kiyota T., Koseki J., Sato T., Tsutsumi Y. 2009. Effects of sample disturbance on small strain characteristics and liquefaction properties of holocene and pleistocene sandy soils. Soils and Foundations, 49(4), 509-23. https://doi.org/ 10.3208/sandf.49.509
  • Kiyota T., Maekawa Y., Wu C. 2019. Using in-situ and laboratory-measured shear wave velocities to evaluate the influence of soil fabric on in-situ liquefaction resistance. Soil Dynamics and Earthquake Engineering, 117, 164-73. https://doi.org/ 10.1016/j.soildyn.2018.11.016
  • Lees J. J., Ballagh R. H., Orense R. P., van Ballegooy S. 2015. CPT-based analysis of liquefaction and re-liquefaction following the Canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 79, 304-314. https://doi.org/ 10.1016/j.soildyn.2015.02.004
  • Facciorusso J., Madiai C., Vannucchi G. 2015. CPT-Based Liquefaction Case History from the 2012 Emilia Earthquake in Italy. Journal of Geotechnical and Geoenvironmental Engineering, 141(12). https://doi.org/ 10.1061/(asce)gt.1943-5606.0001349
  • Chern S. G., Lee C. Y. 2009. CPT-based simplified liquefaction assessment by using fuzzy-neural network. Journal of Marine Science and Technology-Taiwan, 17(4), 326-31. https://doi.org/ 10.51400/2709-6998.2024
  • Seed H. B., Idriss I. M. 1971. Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundation Division, 97(SM9), 1249-73. https://doi.org/ 10.1061/JSFEAQ.0001662
  • Youd T. L., Idriss I. M., Andrus R. D., Arango I., Castro G., Chritrian J., et al. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817-33. https://doi.org/ 10.1061/(ASCE)1090-0241(2001)127:10(817)
  • Cetin K. O., Seed H. B., Der Kiureghian A., Tokimatsu K., Harder L., Kayen R., et al. 2004. SPT-Based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-40. https://doi.org/ 10.1016/j.dib.2018.08.043
  • Duman, E. S., Ikizler, S. B., & Angin, Z. E. K. A. I. (2015). Evaluation of soil liquefaction potential index based on SPT data in the Erzincan, Eastern Turkey. Arabian Journal of Geosciences, 8, 5269-5283. https://doi.org/ 10.1007/s12517-014-1550-4
  • Yıldız, Ö. (2022). Seismic site characterization of Battalgazi in Malatya, Turkey. Arabian Journal of Geosciences, 15(9), 867. https://doi.org/10.1007/s12517-022-10170-x
  • Akkaya, İ., Özvan, A., Akin, M., Akin, M. K., & Övün, U. (2018). Comparison of SPT and V s-based liquefaction analyses: a case study in Erciş (Van, Turkey). Acta Geophysica, 66, 21-38. https://doi.org/10.1007/s11600-017-0103-0
  • Avagyan, A., Sosson, M., Sahakyan, L., Sheremet, Y., Vardanyan, S., Martirosyan, M., Muller, C., 2018. Tectonic Evolution of the Northern Margin of the Cenozoic Ararat Basin, Lesser Caucasus, Armenia. J Petr. Geol. 41(4):495-511. https://doi.org/ 10.1111/jpg.12718
  • Turkiye Istatistik Kurumu İl ve ilçelere göre il/ilçe merkezi, belde/köy nüfusu ve yıllık nüfus artış hızı, [online] Available at: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 [Accessed: 17.05.2023]
  • Karaoğlu M., Erdel E. 2022. A Study of Soil and Land Features with Geographic Information Systems (GIS) Analysis: Iğdır, Türkiye. Türkiye Tarımsal Araştırmalar Dergisi, 9(2), 198-208. https://doi.org/ 10.19159/tutad.1076908
  • Koç A., Koç C. 2018. An Assessment through relationship between air pollution and climatic parameters in City of Igdır. Journal of Urban Cultures and Managements, 11(1), 1-10.
  • Öztürk M., Altay V., Altundağ E., Gücel S. 2016. Halophytic plant diversity of unique habitats in Turkey: Salt mine caves of Çankırı and Iğdır. Halophytes for food security in dry lands, Elsevier, 291-315.
  • Bulut F., Bohnhoff M., Eken T., Janssen C., Kilic T., Dresen G. 2012. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. Journal of Geophysics Research-Solid Earth, 117. https://doi.org/ 10.1029/2011jb008966
  • Yavasoglu H., Tari E., Tuysuz O., Cakir Z., Ergintav S. 2011. Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. Journal of Geodynamics, 51(5), 339-43. https://doi.org/ 10.1016/j.jog.2010.07.003
  • Ministry of Disaster and Emergency Management Presidency (AFAD). http://www.deprem.gov.tr/en/event catalogue (accessed at 12 December 2023).
  • Emre Ö., Duman T. Y., Özalp S., Şaroğlu F., Olgun Ş., Elmacı H., et al. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-75. https://doi.org/ 10.1007/s10518-016-0041-2
  • Karakhanian A. S., Trifonov V. G., Philip H., Avagyan A., Hessami K., Jamali F., et al. 2004. Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380(3-4), 189-219. https://doi.org/ 10.1016/j.tecto.2003.09.020
  • Wells D. L., Coppersmith K. J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002. https://doi.org/ 10.1785/BSSA0840040974
  • Ulusay R., Tuncay E., Sonmez H., Gokceoglu C. 2004. An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Engineering Geology, 74(3-4), 265-91. https://doi.org/ 10.1016/j.enggeo.2004.04.002
  • Guzel, Y. 2024. Correlating Measured SPT-N, Shear Wave Velocity and Liquid Limit Values in Melekli Region, Igdır (Türkiye). Journal of Advanced Research in Natural and Applied Sciences, 10(1), 161-174. https://doi.org/10.28979/jarnas.1393352
  • Seed H. B., Idriss I. M. 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundation Division, 97(9), 1249-73.
  • Seed H. B., Tokimatsu K., Harder L. F., Chung R. M. 1985. Influence of spt procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering-ASCE, 111(12), 1425-45.
  • Liao S. S. C., Whitman R. V. 1986. Overburden correction factors for spt in sand. Journal of Geotechnical Engineering-ASCE, 112(3), 373-7. https://doi.org/ 10.1061/(asce)0733-9410(1986)112:3(373)
  • Akin M. K., Kramer S. L., Topal T. 2016. Dynamic soil characterization and site response estimation for Erbaa, Tokat (Turkey). Natural Hazards, 82(3), 1833-68. https://doi.org/ 10.1007/s11069-016-2274-4
  • Seed R. B., Cetin K. O., Moss R. E., Kammerer A. M., Wu J., Pestana J. M., et al. 2003. Recent advances in soil liquefaction engineering: a unified and consistent framework. Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
  • Sonmez H. 2003. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol,Turkey). Environmental Geology, 44(7), 862-71. https://doi.org/ 10.1007/s00254-003-0831-0
  • Tosun H., Ulusay R. 1997. Engineering geological characterization and evaluation of liquefaction susceptibility of foundation soils at a dam site, southwest Turkey. Environmental and Engineering Geosciences, 3(3), 389-409. https://doi.org/ 10.2113/gseegeosci.III.3.389
  • Ulusay R., Kuru T. 2004. 1998 Adana-Ceyhan (Turkey) earthquake and a preliminary microzonation based on liquefaction potential for Ceyhan town. Natural Hazards, 32(1), 59-88. https://doi.org/ 10.1023/b:Nhaz.0000026790.71304.32
  • Duman E. S., Ikizler S. B., Angin Z. 2015. Evaluation of soil liquefaction potential index based on SPT data in the Erzincan, Eastern Turkey. Arabian Journal of Geosciences, 8(7), 5269-83. https://doi.org/ 10.1007/s12517-014-1550-4
  • Seed H. B., Idriss I. 1982. Ground motion and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, California.
  • Iwasaki T., Tokida K., Tatsuoka F., Watanabe S., Yasuda S., Sato H. 1981. Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd international conference on microzonation, Seattle, pp. 1310-30.
  • Sonmez H., Gokceoglu C. 2005. A liquefaction severity index suggested for engineering practice. Environmental Geology, 48(1), 81-91. https://doi.org/ 10.1007/s00254-005-1263-9
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deprem Mühendisliği, İnşaat Geoteknik Mühendisliği, İnşaat Mühendisliğinde Zemin Mekaniği
Bölüm Makaleler
Yazarlar

Yusuf Guzel 0000-0003-2957-8060

Muhammed Alperen Ozdemir

Erken Görünüm Tarihi 30 Nisan 2024
Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 23 Ocak 2024
Kabul Tarihi 31 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 40 Sayı: 1

Kaynak Göster

APA Guzel, Y., & Ozdemir, M. A. (2024). SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(1), 148-166.
AMA Guzel Y, Ozdemir MA. SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Nisan 2024;40(1):148-166.
Chicago Guzel, Yusuf, ve Muhammed Alperen Ozdemir. “SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye)”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40, sy. 1 (Nisan 2024): 148-66.
EndNote Guzel Y, Ozdemir MA (01 Nisan 2024) SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40 1 148–166.
IEEE Y. Guzel ve M. A. Ozdemir, “SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye)”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 1, ss. 148–166, 2024.
ISNAD Guzel, Yusuf - Ozdemir, Muhammed Alperen. “SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye)”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40/1 (Nisan 2024), 148-166.
JAMA Guzel Y, Ozdemir MA. SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40:148–166.
MLA Guzel, Yusuf ve Muhammed Alperen Ozdemir. “SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye)”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 1, 2024, ss. 148-66.
Vancouver Guzel Y, Ozdemir MA. SPT Based Liquefaction Hazard Assessments in Igdır City (Türkiye). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40(1):148-66.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.