Derleme
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 9 Sayı: 2, 375 - 384, 31.05.2023
https://doi.org/10.19127/mbsjohs.1187145

Öz

Kaynakça

  • 1. Akcay G. Deneysel Travmatik Beyin Hasarı Modelleri. In: Agar A, Akcay G, editors. Nörolojik Hastalıkların Deneysel Hayvan Modelleri: Akademisyen Kitapevi; 2022. p. 159-68.
  • 2. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. Journal of neurotrauma. 2010;27(8):1529-40.
  • 3. Michael G, Thomas R, Sandra MG, Gentian T, Lawrence C, Z L-R. A Review of Traumatic Brain Injury Animal Models: Are We Lacking Adequate Models Replicating Chronic Traumatic Encephalopathy? Journal of Neurology and Neurobiology. 2015;2(1).
  • 4. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of head trauma rehabilitation. 2006;21(5):375-8.
  • 5. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. The Lancet Neurology. 2008;7(8):728-41.
  • 6. Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol. 2019;56(8):5332-45.
  • 7. Briones TL. Chapter 3 animal models of traumatic brain injury: is there an optimal model that parallels human brain injury? Annual review of nursing research. 2015;33:31-73.
  • 8. Davis AE. Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Critical care nursing quarterly. 2000;23(3):1-13.
  • 9. Hay J, Johnson VE, Smith DH, Stewart W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. Annual review of pathology. 2016;11:21-45.
  • 10. Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert opinion on emerging drugs. 2009;14(1):67-84.
  • 11. Doppenberg EM, Choi SC, Bullock R. Clinical trials in traumatic brain injury: lessons for the future. Journal of neurosurgical anesthesiology. 2004;16(1):87-94.
  • 12. Maas AI. Neuroprotective agents in traumatic brain injury. Expert opinion on investigational drugs. 2001;10(4):753-67.
  • 13. Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol. 2002;15(6):707-12.
  • 14. Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Current opinion in critical care. 2007;13(2):134-42.
  • 15. Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. Journal of neurotrauma. 1995;12(4):555-64.
  • 16. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128-42.
  • 17. Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain pathology (Zurich, Switzerland). 2004;14(2):215-22.
  • 18. Bramlett HM, Dietrich WD. Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res. 2007;161:125-41.
  • 19. Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. Journal of neurotrauma. 2000;17(10):927-38.
  • 20. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci. 2001;21(19):7439-46.
  • 21. Margulies S, Hicks R. Combination therapies for traumatic brain injury: prospective considerations. Journal of neurotrauma. 2009;26(6):925-39.
  • 22. Marklund N, Bakshi A, Castelbuono DJ, Conte V, McIntosh TK. Evaluation of pharmacological treatment strategies in traumatic brain injury. Current pharmaceutical design. 2006;12(13):1645-80.
  • 23. Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971-89.
  • 24. Viano DC, Hamberger A, Bolouri H, Säljö A. Evaluation of three animal models for concussion and serious brain injury. Annals of biomedical engineering. 2012;40(1):213-26.
  • 25. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291-300.
  • 26. Cernak I. Animal models of head trauma. NeuroRx. 2005;2(3):410-22.
  • 27. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nature protocols. 2009;4(9):1328-37.
  • 28. Adelson PD, Robichaud P, Hamilton RL, Kochanek PM. A model of diffuse traumatic brain injury in the immature rat. J Neurosurg. 1996;85(5):877-84.
  • 29. Mychasiuk R, Farran A, Esser MJ. Assessment of an experimental rodent model of pediatric mild traumatic brain injury. Journal of neurotrauma. 2014;31(8):749-57.
  • 30. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076(1):216-24.
  • 31. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211(1):67-77.
  • 32. Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. Experimental & translational stroke medicine. 2010;2(1):16. 33. Nilsson P, Gazelius B, Carlson H, Hillered L. Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in the rat. Journal of neurotrauma. 1996;13(4):201-7. 34. Lindh C, Wennersten A, Arnberg F, Holmin S, Mathiesen T. Differences in cell death between high and low energy brain injury in adult rats. Acta neurochirurgica. 2008;150(12):1269-75;discussion 75.
  • 35. Shapira Y, Shohami E, Sidi A, Soffer D, Freeman S, Cotev S. Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit Care Med. 1988;16(3):258-65.
  • 36. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. Journal of neurotrauma. 1996;13(10):557-68.
  • 37. Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol. 2011;164(4):1207-29.
  • 38. Prins ML, Hovda DA. Developing experimental models to address traumatic brain injury in children. Journal of neurotrauma. 2003;20(2):123-37.
  • 39. Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx. 2006;3(2):143-53.
  • 40. Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. The Psychiatric clinics of North America. 2014;37(1):1-11.
  • 41. Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. Journal of neurotrauma. 2015;32(23):1861-82.
  • 42. Johnson VE, Meaney DF, Cullen DK, Smith DH. Animal models of traumatic brain injury. Handb Clin Neurol. 2015;127:115-28.

Weight Drop Models in Traumatic Brain Injury

Yıl 2023, Cilt: 9 Sayı: 2, 375 - 384, 31.05.2023
https://doi.org/10.19127/mbsjohs.1187145

Öz

Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. TBI is often seen in people with loss of motor, cognitive and sensory function. TBI causes serious health problems such as death, disability and mental disorders. TBI continues to be an increasing health problem all over the world. It is estimated that approximately 1.7 million people suffer from head trauma each year and approximately 50,000 of these individuals die. Although TBI is seen in all ages and populations, the age population with the highest incidence is children and the elderly. Falls, sports activities and motor vehicle accidents are the biggest risk factors for TBI. To develop diagnosis and treatment methods for traumatic brain injury, the molecular and cellular mechanisms underlying neuropathology should be known. Therefore, different models of mild, moderate and severe experimental traumatic brain injury models are used. Animal models of traumatic brain injury are broadly classified as focal, diffuse, and mixed injury. Fluid percussion, controlled cortical effect, weight reduction and blast wave are the most preferred models in traumatic brain injury experimental research. This review describes the strengths and weaknesses of current rodent models for traumatic brain injury.

Kaynakça

  • 1. Akcay G. Deneysel Travmatik Beyin Hasarı Modelleri. In: Agar A, Akcay G, editors. Nörolojik Hastalıkların Deneysel Hayvan Modelleri: Akademisyen Kitapevi; 2022. p. 159-68.
  • 2. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. Journal of neurotrauma. 2010;27(8):1529-40.
  • 3. Michael G, Thomas R, Sandra MG, Gentian T, Lawrence C, Z L-R. A Review of Traumatic Brain Injury Animal Models: Are We Lacking Adequate Models Replicating Chronic Traumatic Encephalopathy? Journal of Neurology and Neurobiology. 2015;2(1).
  • 4. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of head trauma rehabilitation. 2006;21(5):375-8.
  • 5. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. The Lancet Neurology. 2008;7(8):728-41.
  • 6. Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol. 2019;56(8):5332-45.
  • 7. Briones TL. Chapter 3 animal models of traumatic brain injury: is there an optimal model that parallels human brain injury? Annual review of nursing research. 2015;33:31-73.
  • 8. Davis AE. Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Critical care nursing quarterly. 2000;23(3):1-13.
  • 9. Hay J, Johnson VE, Smith DH, Stewart W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. Annual review of pathology. 2016;11:21-45.
  • 10. Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert opinion on emerging drugs. 2009;14(1):67-84.
  • 11. Doppenberg EM, Choi SC, Bullock R. Clinical trials in traumatic brain injury: lessons for the future. Journal of neurosurgical anesthesiology. 2004;16(1):87-94.
  • 12. Maas AI. Neuroprotective agents in traumatic brain injury. Expert opinion on investigational drugs. 2001;10(4):753-67.
  • 13. Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol. 2002;15(6):707-12.
  • 14. Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Current opinion in critical care. 2007;13(2):134-42.
  • 15. Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. Journal of neurotrauma. 1995;12(4):555-64.
  • 16. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128-42.
  • 17. Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain pathology (Zurich, Switzerland). 2004;14(2):215-22.
  • 18. Bramlett HM, Dietrich WD. Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res. 2007;161:125-41.
  • 19. Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. Journal of neurotrauma. 2000;17(10):927-38.
  • 20. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci. 2001;21(19):7439-46.
  • 21. Margulies S, Hicks R. Combination therapies for traumatic brain injury: prospective considerations. Journal of neurotrauma. 2009;26(6):925-39.
  • 22. Marklund N, Bakshi A, Castelbuono DJ, Conte V, McIntosh TK. Evaluation of pharmacological treatment strategies in traumatic brain injury. Current pharmaceutical design. 2006;12(13):1645-80.
  • 23. Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971-89.
  • 24. Viano DC, Hamberger A, Bolouri H, Säljö A. Evaluation of three animal models for concussion and serious brain injury. Annals of biomedical engineering. 2012;40(1):213-26.
  • 25. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291-300.
  • 26. Cernak I. Animal models of head trauma. NeuroRx. 2005;2(3):410-22.
  • 27. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nature protocols. 2009;4(9):1328-37.
  • 28. Adelson PD, Robichaud P, Hamilton RL, Kochanek PM. A model of diffuse traumatic brain injury in the immature rat. J Neurosurg. 1996;85(5):877-84.
  • 29. Mychasiuk R, Farran A, Esser MJ. Assessment of an experimental rodent model of pediatric mild traumatic brain injury. Journal of neurotrauma. 2014;31(8):749-57.
  • 30. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076(1):216-24.
  • 31. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211(1):67-77.
  • 32. Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. Experimental & translational stroke medicine. 2010;2(1):16. 33. Nilsson P, Gazelius B, Carlson H, Hillered L. Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in the rat. Journal of neurotrauma. 1996;13(4):201-7. 34. Lindh C, Wennersten A, Arnberg F, Holmin S, Mathiesen T. Differences in cell death between high and low energy brain injury in adult rats. Acta neurochirurgica. 2008;150(12):1269-75;discussion 75.
  • 35. Shapira Y, Shohami E, Sidi A, Soffer D, Freeman S, Cotev S. Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit Care Med. 1988;16(3):258-65.
  • 36. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. Journal of neurotrauma. 1996;13(10):557-68.
  • 37. Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol. 2011;164(4):1207-29.
  • 38. Prins ML, Hovda DA. Developing experimental models to address traumatic brain injury in children. Journal of neurotrauma. 2003;20(2):123-37.
  • 39. Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx. 2006;3(2):143-53.
  • 40. Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. The Psychiatric clinics of North America. 2014;37(1):1-11.
  • 41. Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. Journal of neurotrauma. 2015;32(23):1861-82.
  • 42. Johnson VE, Meaney DF, Cullen DK, Smith DH. Animal models of traumatic brain injury. Handb Clin Neurol. 2015;127:115-28.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Güven Akçay 0000-0003-3418-8825

Yayımlanma Tarihi 31 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

Vancouver Akçay G. Weight Drop Models in Traumatic Brain Injury. Middle Black Sea Journal of Health Science. 2023;9(2):375-84.

22104 22108 22107 22106 22105 22103 22109   22137  2210222110     e-ISSN 2149-7796